Nanoscale Transistors

Nanoscale Transistors

Author: Mark Lundstrom

Publisher: Springer Science & Business Media

Published: 2006-06-18

Total Pages: 223

ISBN-13: 0387280030

DOWNLOAD EBOOK

To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules


Nanoscale Device Physics

Nanoscale Device Physics

Author: Sandip Tiwari

Publisher: Oxford University Press

Published: 2017-03-31

Total Pages: 682

ISBN-13: 0191078042

DOWNLOAD EBOOK

Nanoscale devices differ from larger microscale devices because they depend on the physical phenomena and effects that are central to their operation. This textbook illuminates the behavior of nanoscale devices by connecting them to the electronic, as well as magnetic, optical and mechanical properties, which fundamentally affect nanoscale devices in fascinating ways. Their small size means that an understanding of the phenomena measured is even more important, as their effects are so dominant and the changes in scale of underlying energetics and response are significant. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the interactions, and others. These interactions, with the limits on size, make their physical behavior interesting, important and useful. The collection of four textbooks in the Electroscience Series culminates in a comprehensive understanding of nanoscale devices — electronic, magnetic, mechanical and optical — in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.


Nanoscale Devices

Nanoscale Devices

Author: Brajesh Kumar Kaushik

Publisher: CRC Press

Published: 2018-11-16

Total Pages: 414

ISBN-13: 1351670212

DOWNLOAD EBOOK

The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter


Semiconductor Physics

Semiconductor Physics

Author: Sandip Tiwari

Publisher: Oxford University Press, USA

Published: 2020

Total Pages: 832

ISBN-13: 019875986X

DOWNLOAD EBOOK

This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.


Nanoscale Electronic Devices and Their Applications

Nanoscale Electronic Devices and Their Applications

Author: Khurshed Ahmad Shah

Publisher: CRC Press

Published: 2020-08-03

Total Pages: 265

ISBN-13: 1000163563

DOWNLOAD EBOOK

Nanoscale Electronic Devices and Their Applications helps readers acquire a thorough understanding of the fundamentals of solids at the nanoscale level in addition to their applications including operation and properties of recent nanoscale devices. This book includes seven chapters that give an overview of electrons in solids, carbon nanotube devices and their applications, doping techniques, construction and operational details of channel-engineered MOSFETs, and spintronic devices and their applications. Structural and operational features of phase-change memory (PCM), memristor, and resistive random-access memory (ReRAM) are also discussed. In addition, some applications of these phase-change devices to logic designs have been presented. Aimed at senior undergraduate students in electrical engineering, micro-electronics engineering, physics, and device physics, this book:  Covers a wide area of nanoscale devices while explaining the fundamental physics in these devices  Reviews information on CNT two- and three-probe devices, spintronic devices, CNT interconnects, CNT memories, and NDR in CNT FETs  Discusses spin-controlled devices and their applications, multi-material devices, and gates in addition to phase-change devices  Includes rigorous mathematical derivations of the semiconductor physics  Illustrates major concepts thorough discussions and various diagrams


Physics of Semiconductor Microcavities

Physics of Semiconductor Microcavities

Author: Benoit Deveaud

Publisher: John Wiley & Sons

Published: 2007-02-27

Total Pages: 328

ISBN-13: 3527610162

DOWNLOAD EBOOK

Electron and photon confinement in semiconductor nanostructures is one of the most active areas in solid state research. Written by leading experts in solid state physics, this book provides both a comprehensive review as well as a excellent introduction to fundamental and applied aspects of light-matter coupling in microcavities. Topics covered include parametric amplification and polariton liquids, quantum fluid and non-linear dynamical effects and parametric instabilities, polariton squeezing, Bose-Einstein condensation of microcavity polaritons, spin dynamics of exciton-polaritons, polariton correlation produced by parametric scattering, progress in III-nitride distributed Bragg reflectors using AlInN/GaN materials, high efficiency planar MCLEDs, exciton-polaritons and nanoscale cavities in photonic crystals, and MBE growth of high finesse microcavities.


Nanoscale Devices - Fundamentals and Applications

Nanoscale Devices - Fundamentals and Applications

Author: Rudolf Gross

Publisher: Springer

Published: 2006-06-29

Total Pages: 378

ISBN-13: 9781402051050

DOWNLOAD EBOOK

This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.


Modeling Self-Heating Effects in Nanoscale Devices

Modeling Self-Heating Effects in Nanoscale Devices

Author: Katerina Raleva

Publisher: Morgan & Claypool Publishers

Published: 2017-09-13

Total Pages: 148

ISBN-13: 1681741873

DOWNLOAD EBOOK

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.


Nanoscale Silicon Devices

Nanoscale Silicon Devices

Author: Shunri Oda

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 288

ISBN-13: 1482228688

DOWNLOAD EBOOK

Is Bigger Always Better? Explore the Behavior of Very Small Devices as Described by Quantum Mechanics Smaller is better when it comes to the semiconductor transistor. Nanoscale Silicon Devices examines the growth of semiconductor device miniaturization and related advances in material, device, circuit, and system design, and highlights the use of device scaling within the semiconductor industry. Device scaling, the practice of continuously scaling down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs), has significantly improved the performance of small computers, mobile phones, and similar devices. The practice has resulted in smaller delay time and higher device density in a chip without an increase in power consumption. This book covers recent advancements and considers the future prospects of nanoscale silicon (Si) devices. It provides an introduction to new concepts (including variability in scaled MOSFETs, thermal effects, spintronics-based nonvolatile computing systems, spin-based qubits, magnetoelectric devices, NEMS devices, tunnel FETs, dopant engineering, and single-electron transfer), new materials (such as high-k dielectrics and germanium), and new device structures in three dimensions. It covers the fundamentals of such devices, describes the physics and modeling of these devices, and advocates further device scaling and minimization of energy consumption in future large-scale integrated circuits (VLSI). Additional coverage includes: Physics of nm scaled devices in terms of quantum mechanics Advanced 3D transistors: tri-gate structure and thermal effects Variability in scaled MOSFET Spintronics on Si platform NEMS devices for switching, memory, and sensor applications The concept of ballistic transport The present status of the transistor variability and more An indispensable resource, Nanoscale Silicon Devices serves device engineers and academic researchers (including graduate students) in the fields of electron devices, solid-state physics, and nanotechnology.