"This book focuses on the basic aspects of nanoemulsion, synthesis and characterization, and focuses on the different types of applications for nanoemulsions in agriculture, food, health, and biomedical sciences"--
Nanoemulsions are produced by mixing an oil phase with an aqueous phase under shear pressure. This procedure yields uniform populations of oil droplets ranging in diameter from 200 to 8 nm that are kinetically stable colloidal substances with enhanced properties compared to the conventional emulsion substances. Nanoemulsions have broad potential applications in agriculture, food, health, and biomedical sciences. The Handbook of Research on Nanoemulsion Applications in Agriculture, Food, Health, and Biomedical Sciences focuses on the aspects of nanoemulsion-like synthesis, characterization, and more and examines recent trends in their applications within a variety of relevant fields. Nanoemulsions have broad application in many different fields; without emulsification, process product development would not be possible. Covering topics such as cancer treatment, healthcare applications, and food manufacturing, this book is essential for scientists, doctors, researchers, post-graduate students, medical students, government officials, hospital directors, professors, and academicians.
Essential oils are simply the volatile oils of plants. These are concentrated liquids contain many terpenes, alkaloids and alcohols etc. Various compounds of essential oils have bioactive properties such as antimicrobial, anti-cancer, anti-diabetic, anti-viral and anti-fungal etc. This book describes the sources of essential oils, extraction and production method, characterizing tools, bioactivity, and various applications in the field of industries, daily usage, agriculture, health, and food.
The volume "Nanocomposite and Nanohybrid Materials: Processing and Applications" is an outstanding resource for exploring the findings and recent trends of nanocomposites and nanohybrid materials. Herein, a full grasp of cutting-edge research, new technologies, and exciting opportunities linked with nanocomposites and nanohybrids. Nanomaterials, including their synthesis, development, and advanced properties, are thoroughly investigated. Several processes for preparing nanomaterials are presented to the reader, along with their characteristics and development phase. It offers the latest applications of nanoparticles for diagnosing and treating neurological disorders and their use in biological imaging and targeted cancer treatments. This provides a strong basis for future study and innovation in this intriguing issue that is very important to methodology, qualitative approaches, and applications.
With the recent shift of chemical fertilizers and pesticides to organic agriculture, the employment of microbes that perform significant beneficial functions for plants has been highlighted. This book presents timely discussion and coverage on the use of microbial formulations, which range from powdered or charcoal-based to solution and secondary metabolite-based bioformulations. Bioformulation development of biofertilizers and biopesticides coupled with the advantages of nanobiotechnology propose significant applications in the agricultural section including nanobiosensors, nanoherbicides, and smart transport systems for the regulated release of agrochemical. Moreover, the formulation of secondary metabolites against individual phytopathogens could be used irrespective of geographical positions with higher disease incidences. The prospective advantages and uses of nanobiotechnology generate tremendous interest, as it could augment production of agricultural produce while being cost-effective both energetically and economically. This bioformulation approach is incomparable to existing technology, as the bioformulation would explicitly target the particular pathogen without harming the natural microbiome of the ecosystem. Nanobiotechnology in Bioformulations covers the constraints associated with large-scale development and commercialization of bioinoculant formations. Furthermore, exclusive emphasis is be placed on next-generation efficient bioinoculants having secondary metabolite formulations with longer shelf life and advanced competence against several phytopathogens. Valuable chapters deal with bioformulation strategies that use divergent groups of the microbiome and include detailed diagrammatic and pictorial representation. This book will be highly beneficial for both experts and novices in the fields of microbial bioformulation, nanotechnology, and nano-microbiotechnology. It discusses the prevailing status and applications available for microbial researchers and scientists, agronomists, students, environmentalists, agriculturists, and agribusiness professionals, as well as to anyone devoted to sustaining the ecosystem.
Instructional technologies used to be optional and supplemental pedagogical tools until the global health crisis of 2020 compelled education systems to rely on digital devices and services to guarantee academic continuity. Suddenly, the contemporary principles and practices utilized in delivering health education curricula were insufficient and ineffective. Acknowledging the vital role of technology in shaping the future of education, there is now a greater demand to foster innovative interventions and continuous improvement in strategies, methodologies, and systems to empower learners, educators, and leaders in the digital age. This paradigm shift requires a fundamental transformation in the way we approach teaching and learning, and a willingness to embrace new approaches and tools that can enhance the quality of education and support student success. The Handbook of Research on Instructional Technologies in Health Education and Allied Disciplines provides comprehensive coverage of innovative methods and strategies to produce the next generation of health professionals. The book lays the groundwork for implementable teaching and learning models that facilitate knowledge acquisition, enhance perceptual variation, improve skill coordination, and develop a scientific and technological mindset. Each chapter provides an in-depth examination of instructional technologies contextualized in various medical and health domains, including nursing, physiotherapy, radiology, neurophysiology, physical health, dentistry, clinical medicine, and more. This reference work is a must-read for all stakeholders in health education and related fields, including educators, students, researchers, administrators, and healthcare professionals.
Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. The Handbook of Research on Tribology in Coatings and Surface Treatment evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
The book presents new and novel perceptions about ailments alleviating the effects of several mushroom species. Also, the book highlights the curative role of medicinal mushrooms on some peripheral and central diseases. Various chapters in the book (primarily reviews) have been dedicated to providing the therapeutic efficacy of mushrooms against respiratory illnesses, gut microbiota, COVID-19, dementia, epilepsy, mental ailments, cancers, cardiovascular, kidney-related diseases, and other common pathologies. Thus, medicinal mushrooms are current and future consumable healthcare products that usually exhibit nourishing properties and possess prophylactic and therapeutic values with minimal adverse effects and contraindications. The book focuses on Sustainable Development Goal (SDG 3) to promote healthy lives and well-being for all. Medical, pharmacy, nursing, and CAM (complementary and alternative medicine) students, practitioners, scholars, researchers, other healthcare professionals, and general readers are this book’s potential audience. The book can be adopted as a textbook for undergraduate and graduate courses so that the therapeutic potential of mushrooms can reach a wider audience. This book strives to create a new resource for the future use of medicinal mushrooms in various disorders.
The study of the geometry of structures that arise in a variety of specific natural systems, such as chemical, physical, biological, and geological, revealed the existence of a wide range of types of polytopes of the highest dimension that were unknown in classical geometry. At the same time, new properties of polytopes were discovered as well as the geometric patterns to which they obey. There is a need to classify these types of polytopes of the highest dimension by listing their properties and formulating the laws to which they obey. The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems explains the meaning of higher dimensions and systematically generalizes the results of geometric research in various fields of knowledge. This book is useful both for the fundamental development of geometry and for the development of branches of science related to human activities. It builds upon previous books published by the author on this topic. Covering areas such as heredity, geometry, and dimensions, this reference work is ideal for researchers, scholars, academicians, practitioners, industry professionals, instructors, and students.
As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.