Nanocatalysis, a subdiscipline of nanoscience, seeks to control chemical reactions by changing the size, dimensionality, chemical composition, and morphology of the reaction center and by changing the kinetics using nanopatterning of the reaction center. This book offers a detailed pedagogical and methodological overview of the field. Readers discover many examples of current research, helping them explore new and emerging applications.
Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.
Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.
The field of nanocatalysis is undergoing rapid development. Nanocatalysis can help in designing catalysts with excellent activity, greater selectivity, and high stability. Their properties can easily be tuned by tailoring the size, shape, and morphology of the particular nanomaterial. Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. Nanocatalysis: Synthesis of Bioactive Heterocycles reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research specially synthesis of bioactive heterocycles. Top researchers summarize synthetic methodologies for the synthesis of bioactive heterocycles using a nanocatalytic framework. The catalytic performance and the synthesis and characterization of nanocatalysts are reviewed. State of the art methods and new and emerging applications of nanocatalysts in the synthesis of biologically active heterocycles are detailed. Additional features include: Focuses on designing and synthesizing nanocatalysts specifically for the synthesis of different bioactive heterocycles. Demonstrates how nanocatalysis can produce catalysts with excellent activity, greater selectivity, and high stability. Explores tuning catalysts properties by tailoring the size, shape, and morphology of a nanomaterial. Offers the reader insights into the field of nanoscience via nanocatalysis. Nanocatalysis: Synthesis of Bioactive Heterocycles is a must read for researchers in organic chemistry, medicinal chemistry and biochemistry.
Synthesis and design of new nanocatalysts is an important area of research that aims to introduce multiple types of useful applications in a greener market. The necessity of nanostructuring the active sites has emerged as the key point in a successful design of the catalysts. The book covers the progress in this research area done in the last ten years. It includes the classification of catalysts and structure of active sites at the nanoscale. The book covers examples to present the concept, evolution of nanocatalysts from the perspective of chemistry of materials and their applications.
Introduces the detailed basis and recent development of single molecule/particle nanocatalysis based on single molecule techniques This unique book introduces and summarizes the recent development of single molecule/particle nanocatalysis to provide both comprehensive coverage of fundamentals for different methods now in widespread use and the extensive applications in different catalytic systems. Chapters are mainly based on different detection methods, including single molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface enhanced Raman spectroscopy. The book also includes numerous basic principles of different methods and application examples and features illustrations that help clarify presentations. Single Particle Nanocatalysis: Fundamentals and Applications starts with the history and development of single molecule techniques for nanocatalysis. It then shows readers how single molecule fluorescence microscopy (SMFM) reveals catalytic kinetics and dynamics of individual nanocatalysts. Next, it examines traditional SMFM-based single molecule nanocatalysis without super-resolution (SR) imaging, before moving on to the topic of SMFM-based SR imaging in single molecule nanocatalysis. Following chapters cover scanning electrochemical microscopy for single particle nanocatalysis; surface plasmon resonance spectroscopy for single particle nanocatalysis/reactions; X-ray-based microscopy of single-particle nanocatalysis; and surface-enhanced Raman spectroscopy for single particle nanocatalysis. The book finishes by introducing some less-practiced techniques for single particle nanocatalysis/electrochemistry. -Presents a systematical and complete introduction to the subject of single particle nanocatalysis?covering all of its fundamentals and applications -Helps readers fully understand the basis, role, and recent development of single molecule nanocatalysis -Teaches researchers how to gain new knowledge to successfully conduct their own studies within this rapidly increasing new area of research Single Particle Nanocatalysis: Fundamentals and Applications is an excellent reference book for experts in this area as well as for general researchers who want to learn how to study nanocatalysis at single molecule/particle level.
An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. Explore the environmental applications of heterogeneous nanocatalysis in the field of alternative energy production In Volume 2: Environmental Applications of Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers discusses the foundational concepts and practical applications of heterogeneous nanocatalysis for alternative energy production. Volume 2 focuses on the purification of auto exhaust pollutants and volatile organic compounds, as well as CO2 conversion and wastewater treatment over a range of nano-sized catalysts.
An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.
This technical reference covers information about modern nanocatalysts and their applications in organic syntheses, electrochemistry and nanotechnology. The objective of this book is to present a review of the development of nanocatalysts in the fields of organic synthesis and electroanalysis over the last few decades. It provides readers comprehensive, systematic and updated information about the relevant topics. The reader is introduced to nanocatalysts, with the following chapters delving into the different chemical reactions in which they are involved. The topics covered include: carbon-carbon coupling reactions, aryl and organic carbon hetero atom coupling reactions, oxidation-reduction reactions, photocatalysis, heterocyclic reactions and multicomponent catalysis. The concluding chapters cover applications of nanocatalysts in electrochemical synthesis and sensing. The thirteen chapters demonstrate the value of a variety of catalysts that are important in chemical engineering processes. Advanced Nanocatalysis for Organic Synthesis and Electroanalysis delivers a quick and accessible reference on advanced nanocatalysis for a broad range of readers which includes graduate, postgraduate and Ph. D. students of chemical engineering as well as faculty members, research and development (R&D) personnel working in the industrial chemistry sector.
Edited and written by renowned experts in the field, this is the first book to reflect the state of the art of nanocatalysis in ionic liquids. Divided into two core areas, the first part of the book describes the different classes of metal nanoparticles as well as their synthesis in ionic liquids, while the second focuses on such emerging issues as the application of such systems to energy and biomass conversion.