Six Ideas That Shaped Physics: Unit Q - Particles Behaves Like Waves

Six Ideas That Shaped Physics: Unit Q - Particles Behaves Like Waves

Author: Thomas A Moore

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 2003-01-09

Total Pages: 350

ISBN-13:

DOWNLOAD EBOOK

SIX IDEAS THAT SHAPED PHYSICS is the 21st century's alternative to traditional, encyclopedic textbooks. Thomas Moore designed SIX IDEAS to teach students: --to apply basic physical principles to realistic situations --to solve realistic problems --to resolve contradictions between their preconceptions and the laws of physics --to organize the ideas of physics into an integrated hierarchy


Physics

Physics

Author: Leon N. Cooper

Publisher:

Published: 1992

Total Pages: 580

ISBN-13:

DOWNLOAD EBOOK

This volume explores the scientific view of the world as it has developed from the earliest theories of Aristotle and Newton to modern thoughts from Einstein.


Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics

Author: Grigori N. Milstein

Publisher: Springer Nature

Published: 2021-12-03

Total Pages: 754

ISBN-13: 3030820408

DOWNLOAD EBOOK

This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.


The Experimental Foundations of Particle Physics

The Experimental Foundations of Particle Physics

Author: Robert N. Cahn

Publisher: Cambridge University Press

Published: 2009-07-23

Total Pages: 567

ISBN-13: 0521521475

DOWNLOAD EBOOK

A unique presentation of our current understanding of particle physics for researchers, advanced undergraduate and graduate students.


Forces in Physics

Forces in Physics

Author: Steven N. Shore

Publisher: Bloomsbury Publishing USA

Published: 2008-07-30

Total Pages: 252

ISBN-13: 0313038635

DOWNLOAD EBOOK

Force is one of the most elementary concepts that must be understood in order to understand modern science; it is discussed extensively in textbooks at all levels and is a requirement in most science guidelines. It is also one of the most challenging - how could one idea be involved in such disparate physical phenomena as gravity and radioactivity? Forces in Physics helps the science student by explaining how these ideas originally were developed and provides context to the stunning conclusions that scientists over the centuries have arrived at. It covers the history of all of the four traditional fundamental forces - gravity, electromagnetism, weak nuclear force, and the strong nuclear force - and shows how these forces have, over the years, allowed physicists to better understand the nature of the physical world. Forces in Physics: A Historical Perspective traces the evolution of the concept from the earliest days of the Ancient Greeks to the contemporary attempt to form a GUT (Grand Unified Theory): Aristotle and others in Ancient Greece who developed ideas about physical laws and the introduction of forces into nature; Newton and others in the Scientific Revolution who discovered that forces like gravity applied throughout the universe; the 19th century examinations of thermodynamics and the forces of the very small; and 20th century developments—relativity, quantum mechanics, and more advanced physics—that revolutionized the way we understand force. The volume includes a glossary of terms, a timeline of important events, and a bibliography of resources useful for further research.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 1002

ISBN-13: 9789888407606

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME I Unit 1: Mechanics Chapter 1: Units and Measurement Chapter 2: Vectors Chapter 3: Motion Along a Straight Line Chapter 4: Motion in Two and Three Dimensions Chapter 5: Newton's Laws of Motion Chapter 6: Applications of Newton's Laws Chapter 7: Work and Kinetic Energy Chapter 8: Potential Energy and Conservation of Energy Chapter 9: Linear Momentum and Collisions Chapter 10: Fixed-Axis Rotation Chapter 11: Angular Momentum Chapter 12: Static Equilibrium and Elasticity Chapter 13: Gravitation Chapter 14: Fluid Mechanics Unit 2: Waves and Acoustics Chapter 15: Oscillations Chapter 16: Waves Chapter 17: Sound


Experimental Techniques In Condensed Matter Physics At Low Temperatures

Experimental Techniques In Condensed Matter Physics At Low Temperatures

Author: Robert C. Richardson

Publisher: CRC Press

Published: 2018-02-19

Total Pages: 276

ISBN-13: 0429973489

DOWNLOAD EBOOK

This practical book provides recipes for the construction of devices used in low temperature experimentation. It emphasizes what works, rather than what might be the optimum method, and lists current sources for purchasing components and equipment.


The Large N Expansion In Quantum Field Theory And Statistical Physics

The Large N Expansion In Quantum Field Theory And Statistical Physics

Author: Edouard Brezin

Publisher: World Scientific

Published: 1993-08-31

Total Pages: 1149

ISBN-13: 981450663X

DOWNLOAD EBOOK

This book contains an edited comprehensive collection of reprints on the subject of the large N limit as applied to a wide spectrum of problems in quantum field theory and statistical mechanics. The topics include (1) Spin Systems; (2) Large N Limit of Gauge Theories; (3) Two-Dimensional QCD; (4) Exact Results on Planar Perturbation Series and the Nature of the 1/N Series; (5) Schwinger-Dyson Equations Approach; (6) QCD Phenomenological Lagrangians and the Large N Limit; (7) Other Approaches to Large N: Eguchi-Kawai Model, Collective Fields and Numerical Methods; (8) Matrix Models; (9) Two-Dimensional Gravity and String Theory.