This book dwells upon intriguing examples and situations that are not generally analysed or discussed in standard textbook and formal couses in physics. In this book, a majority of the examples are from classical physics, which forms an essential part of our education. Each of the six chapters covers a major area of physics, and is subdivided into sections, each of which has a runing theme.
Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.
“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
The crux of the debate between proponents of behavioral psychology and cognitive psychology focuses on the issue of accessibility. Cognitivists believe that mental mechanisms and processes are accessible, and that their inner workings can be inferred from experimental observations of behavior. Behaviorists, on the contrary, believe that mental processes and mechanisms are inaccessible, and that nothing important about them can be inferred from even the most cleverly designed empirical studies. One argument that is repeatedly raised by cognitivists is that even though mental processes are not directly accessible, this should not be a barrier to unravelling the nature of the inner mental processes and mechanisms. Inference works for other sciences, such as physics, so why not psychology? If physics can work so successfully with their kind of inaccessibility to make enormous theoretical progress, then why not psychology? As with most previous psychological debates, there is no "killer argument" that can provide an unambiguous resolution. In its absence, author William Uttal explores the differing properties of physical and psychological time, space, and mathematics before coming to the conclusion that there are major discrepancies between the properties of the respective subject matters that make the analogy of comparable inaccessibilities a false one. This title was first published in 2008.
Gravity in our myths -- Gravity in motion -- Gravity as a fiction -- Gravity as a fact -- Gravity as an equal -- Gravity in excelsis -- Gravity in our bones.
Journey into an unseen world—and to the frontiers of human knowledge Welcome to Atom Land, a subatomic realm governed by the laws of particle physics. Here, electromagnetism is a highway system; the strong force, a railway; the weak force, an airline. With award-winning physicist Jon Butterworth as your guide, you’ll set sail from Port Electron in search of strange new terrain—from the Isle of Quarks to the very edge of Antimatter. Journey into an unseen world—and to the frontiers of human knowledge.
In 1900 many eminent scientists did not believe atoms existed, yet within just a few years the atomic century launched into history with an astonishing string of breakthroughs in physics that began with Albert Einstein and continues to this day. Before this explosive growth into the modern age took place, an all-but-forgotten genius strove for forty years to win acceptance for the atomic theory of matter and an altogether new way of doing physics. Ludwig Boltz-mann battled with philosophers, the scientific establishment, and his own potent demons. His victory led the way to the greatest scientific achievements of the twentieth century. Now acclaimed science writer David Lindley portrays the dramatic story of Boltzmann and his embrace of the atom, while providing a window on the civilized world that gave birth to our scientific era. Boltzmann emerges as an endearingly quixotic character, passionately inspired by Beethoven, who muddled through the practical matters of life in a European gilded age. Boltzmann's story reaches from fin de siècle Vienna, across Germany and Britain, to America. As the Habsburg Empire was crumbling, Germany's intellectual might was growing; Edinburgh in Scotland was one of the most intellectually fertile places on earth; and, in America, brilliant independent minds were beginning to draw on the best ideas of the bureaucratized old world. Boltzmann's nemesis in the field of theoretical physics at home in Austria was Ernst Mach, noted today in the term Mach I, the speed of sound. Mach believed physics should address only that which could be directly observed. How could we know that frisky atoms jiggling about corresponded to heat if we couldn't see them? Why should we bother with theories that only told us what would probably happen, rather than making an absolute prediction? Mach and Boltzmann both believed in the power of science, but their approaches to physics could not have been more opposed. Boltzmann sought to explain the real world, and cast aside any philosophical criteria. Mach, along with many nineteenth-century scientists, wanted to construct an empirical edifice of absolute truths that obeyed strict philosophical rules. Boltzmann did not get on well with authority in any form, and he did his best work at arm's length from it. When at the end of his career he engaged with the philosophical authorities in the Viennese academy, the results were personally disastrous and tragic. Yet Boltzmann's enduring legacy lives on in the new physics and technology of our wired world. Lindley's elegant telling of this tale combines the detailed breadth of the best history, the beauty of theoretical physics, and the psychological insight belonging to the finest of novels.
The book in your hands develops the best traditions of the Russian scientific popular literature. Written in a clear and captivating manner by working theoretical physicists, who are, at the same time, dedicated popularizers of scientific knowledge, it brings to the reader the latest achievements in quantum solid-state physics, but along the way it also shows how the laws of physics reveal themselves even in seemingly trivial episodes concerning the natural phenomena around us. And most importantly, it shows that we live in the world, where scientists are capable of ?proving harmony with algebra?. ? A A Abrikosov, 2003 Nobel Prize Winner in Physics