Multivariate Analysis of Ecological Data using CANOCO 5

Multivariate Analysis of Ecological Data using CANOCO 5

Author: Petr Šmilauer

Publisher: Cambridge University Press

Published: 2014-04-17

Total Pages: 375

ISBN-13: 110769440X

DOWNLOAD EBOOK

An accessible introduction to the theory and practice of multivariate analysis for graduates, researchers and professionals dealing with ecological problems.


Multivariate Analysis of Ecological Data using CANOCO 5

Multivariate Analysis of Ecological Data using CANOCO 5

Author: Petr Šmilauer

Publisher: Cambridge University Press

Published: 2014-04-17

Total Pages: 375

ISBN-13: 1139953044

DOWNLOAD EBOOK

This revised and updated edition focuses on constrained ordination (RDA, CCA), variation partitioning and the use of permutation tests of statistical hypotheses about multivariate data. Both classification and modern regression methods (GLM, GAM, loess) are reviewed and species functional traits and spatial structures analysed. Nine case studies of varying difficulty help to illustrate the suggested analytical methods, using the latest version of Canoco 5. All studies utilise descriptive and manipulative approaches, and are supported by data sets and project files available from the book website: http://regent.prf.jcu.cz/maed2/. Written primarily for community ecologists needing to analyse data resulting from field observations and experiments, this book is a valuable resource to students and researchers dealing with both simple and complex ecological problems, such as the variation of biotic communities with environmental conditions or their response to experimental manipulation.


Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data

Author: Michael Greenacre

Publisher: Fundacion BBVA

Published: 2014-01-09

Total Pages: 336

ISBN-13: 8492937505

DOWNLOAD EBOOK

La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.


Data Analysis in Community and Landscape Ecology

Data Analysis in Community and Landscape Ecology

Author: R. H. Jongman

Publisher: Cambridge University Press

Published: 1995-03-02

Total Pages: 325

ISBN-13: 0521475740

DOWNLOAD EBOOK

Ecological data has several special properties: the presence or absence of species on a semi-quantitative abundance scale; non-linear relationships between species and environmental factors; and high inter-correlations among species and among environmental variables. The analysis of such data is important to the interpretation of relationships within plant and animal communities and with their environments. In this corrected version of Data Analysis in Community and Landscape Ecology, without using complex mathematics, the contributors demonstrate the methods that have proven most useful, with examples, exercises and case-studies. Chapters explain in an elementary way powerful data analysis techniques such as logic regression, canonical correspondence analysis, and kriging.


Sampling Design and Statistical Methods for Environmental Biologists

Sampling Design and Statistical Methods for Environmental Biologists

Author: Roger H. Green

Publisher: John Wiley & Sons

Published: 1979-05-01

Total Pages: 278

ISBN-13: 9780471039013

DOWNLOAD EBOOK

Provides--in an organized and compact source--a comprehensive guide to the principles of sampling design and statistical analysis methods. Reviews the principles of inference, sampling and statistical design, and hypothesis formulation, all with special reference to ecological data. Includes an impact study illustrating the principles presented. Contains a key to five broad categories of environmental studies--as well as examples and examines specific topics that apply to any environmental study. Provides a comprehensive bibliography which is cross-referenced to the text and keyed to a specific topic code (types of methods and environments studied).


Data Analysis in Vegetation Ecology, 3rd Edition

Data Analysis in Vegetation Ecology, 3rd Edition

Author: Otto Wildi

Publisher: CABI

Published: 2017-10-16

Total Pages: 357

ISBN-13: 1786394227

DOWNLOAD EBOOK

The 3rd edition of this popular textbook introduces the reader to the investigation of vegetation systems with an emphasis on data analysis. The book succinctly illustrates the various paths leading to high quality data suitable for pattern recognition, pattern testing, static and dynamic modelling and model testing including spatial and temporal aspects of ecosystems. Step-by-step introductions using small examples lead to more demanding approaches illustrated by real world examples aimed at explaining interpretations. All data sets and examples described in the book are available online and are written using the freely available statistical package R. This book will be of particular value to beginning graduate students and postdoctoral researchers of vegetation ecology, ecological data analysis, and ecological modelling, and experienced researchers needing a guide to new methods. A completely revised and updated edition of this popular introduction to data analysis in vegetation ecology. Includes practical step-by-step examples using the freely available statistical package R. Complex concepts and operations are explained using clear illustrations and case studies relating to real world phenomena. Emphasizes method selection rather than just giving a set of recipes.