Multivariate Analysis in Community Ecology

Multivariate Analysis in Community Ecology

Author: Hugh G. Gauch

Publisher: Cambridge University Press

Published: 1982-02-26

Total Pages: 320

ISBN-13: 9780521282406

DOWNLOAD EBOOK

A full description of computer-based methods of analysis used to define and solve ecological problems. Multivariate techniques permit summary of complex sets of data and allow investigation of many problems which cannot be tackled experimentally because of practical restraints.


Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data

Author: Michael Greenacre

Publisher: Fundacion BBVA

Published: 2014-01-09

Total Pages: 336

ISBN-13: 8492937505

DOWNLOAD EBOOK

La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.


Community Ecology

Community Ecology

Author: Mark Gardener

Publisher: Pelagic Publishing Ltd

Published: 2014-02-01

Total Pages: 553

ISBN-13: 1907807632

DOWNLOAD EBOOK

Interactions between species are of fundamental importance to all living systems and the framework we have for studying these interactions is community ecology. This is important to our understanding of the planets biological diversity and how species interactions relate to the functioning of ecosystems at all scales. Species do not live in isolation and the study of community ecology is of practical application in a wide range of conservation issues. The study of ecological community data involves many methods of analysis. In this book you will learn many of the mainstays of community analysis including: diversity, similarity and cluster analysis, ordination and multivariate analyses. This book is for undergraduate and postgraduate students and researchers seeking a step-by-step methodology for analysing plant and animal communities using R and Excel. Microsoft's Excel spreadsheet is virtually ubiquitous and familiar to most computer users. It is a robust program that makes an excellent storage and manipulation system for many kinds of data, including community data. The R program is a powerful and flexible analytical system able to conduct a huge variety of analytical methods, which means that the user only has to learn one program to address many research questions. Its other advantage is that it is open source and therefore completely free. Novel analytical methods are being added constantly to the already comprehensive suite of tools available in R. Mark Gardener is both an ecologist and an analyst. He has worked in a range of ecosystems around the world and has been involved in research across a spectrum of community types. His knowledge of R is largely self-taught and this gives him insight into the needs of students learning to use R for complicated analyses.


Data Analysis in Community and Landscape Ecology

Data Analysis in Community and Landscape Ecology

Author: R. H. Jongman

Publisher: Cambridge University Press

Published: 1995-03-02

Total Pages: 325

ISBN-13: 0521475740

DOWNLOAD EBOOK

Ecological data has several special properties: the presence or absence of species on a semi-quantitative abundance scale; non-linear relationships between species and environmental factors; and high inter-correlations among species and among environmental variables. The analysis of such data is important to the interpretation of relationships within plant and animal communities and with their environments. In this corrected version of Data Analysis in Community and Landscape Ecology, without using complex mathematics, the contributors demonstrate the methods that have proven most useful, with examples, exercises and case-studies. Chapters explain in an elementary way powerful data analysis techniques such as logic regression, canonical correspondence analysis, and kriging.


Multivariate Statistics for Wildlife and Ecology Research

Multivariate Statistics for Wildlife and Ecology Research

Author: Kevin McGarigal

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 293

ISBN-13: 146121288X

DOWNLOAD EBOOK

With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.


Analysis of Ecological Communities

Analysis of Ecological Communities

Author: Bruce McCune

Publisher: Mjm Software Design

Published: 2002

Total Pages: 300

ISBN-13: 9780972129008

DOWNLOAD EBOOK

Analysis of Ecological Communities offers a rationale and guidance for selecting appropriate, effective, analytical methods in community ecology. The book is suitable as a textbook and reference book on methods for multivariate analysis of ecological communities and their environments. The book covers distance measures, data transformation, outlier analysis, coordination, cluster analysis, PCA RA, CA, DCA, NMS, NMS, CCA, Bray-Curtis, MRPP, Mantel test, discriminant analysis, twinspan, classification and regression trees, structural equation modeling, and more. It also includes brief treatments of community sampling and diversity measures. The 304 page book is richly illustrated. It provides many examples from the literature and demonstrations of basic principles with simulated and real data sets.


Statistics for Ecologists Using R and Excel

Statistics for Ecologists Using R and Excel

Author: Mark Gardener

Publisher: Pelagic Publishing Ltd

Published: 2017-01-16

Total Pages: 503

ISBN-13: 1784271411

DOWNLOAD EBOOK

This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference – t-test and U-test; correlation – Spearman’s rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal–Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. – Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel – Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. – Amazon 5-star review It has been very easy to follow and will be perfect for anyone. – Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. – Goodreads, 4-star review