Multivalued Linear Operators

Multivalued Linear Operators

Author: Ronald Cross

Publisher: CRC Press

Published: 1998-07-09

Total Pages: 356

ISBN-13: 9780824702199

DOWNLOAD EBOOK

Constructs a theoretical framework for the study of linear relations and provides underlying concepts, rules, formulae, theorems and techniques. The book compares the inversion, adjoints, completion and closure of various classes of linear operators. It highlights compact and precompact relations.


Spectral Theory of Multivalued Linear Operators

Spectral Theory of Multivalued Linear Operators

Author: Aymen Ammar

Publisher: CRC Press

Published: 2021-09-14

Total Pages: 314

ISBN-13: 1000293092

DOWNLOAD EBOOK

The concept of multivalued linear operators—or linear relations—is the one of the most exciting and influential fields of research in modern mathematics. Applications of this theory can be found in economic theory, noncooperative games, artificial intelligence, medicine, and more. This new book focuses on the theory of linear relations, responding to the lack of resources exclusively dealing with the spectral theory of multivalued linear operators. The subject of this book is the study of linear relations over real or complex Banach spaces. The main purposes are the definitions and characterization of different kinds of spectra and extending the notions of spectra that are considered for the usual one single-valued operator bounded or not bounded. The volume introduces the theory of pseudospectra of multivalued linear operators. The main topics include demicompact linear relations, essential spectra of linear relation, pseudospectra, and essential pseudospectra of linear relations. The volume will be very useful for researchers since it represents not only a collection of a previously heterogeneous material but is also an innovation through several extensions. Beginning graduate students who wish to enter the field of spectral theory of multivalued linear operators will benefit from the material covered, and expert readers will also find sources of inspiration.


Linear Operators in Hilbert Spaces

Linear Operators in Hilbert Spaces

Author: Joachim Weidmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1461260272

DOWNLOAD EBOOK

This English edition is almost identical to the German original Lineare Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applica tions of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators.


Numerical Range

Numerical Range

Author: Karl E. Gustafson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 202

ISBN-13: 1461384982

DOWNLOAD EBOOK

The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plane covered by those values for an n x n matrix T, then the range of values of a Hermitian matrix, then the field of values when he analyzed what he called the sought-for region.


Theory of Linear Ill-Posed Problems and its Applications

Theory of Linear Ill-Posed Problems and its Applications

Author: Valentin K. Ivanov

Publisher: Walter de Gruyter

Published: 2013-02-18

Total Pages: 296

ISBN-13: 3110944820

DOWNLOAD EBOOK

This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.


Degenerate Differential Equations in Banach Spaces

Degenerate Differential Equations in Banach Spaces

Author: Angelo Favini

Publisher: CRC Press

Published: 1998-09-10

Total Pages: 332

ISBN-13: 148227602X

DOWNLOAD EBOOK

This work presents a detailed study of linear abstract degenerate differential equations, using both the semigroups generated by multivalued (linear) operators and extensions of the operational method from Da Prato and Grisvard. The authors describe the recent and original results on PDEs and algebraic-differential equations, and establishes the analyzability of the semigroup generated by some degenerate parabolic operators in spaces of continuous functions.


Degenerate Differential Equations in Banach Spaces

Degenerate Differential Equations in Banach Spaces

Author: Angelo Favini

Publisher: CRC Press

Published: 1998-09-10

Total Pages: 338

ISBN-13: 9780824716776

DOWNLOAD EBOOK

This work presents a detailed study of linear abstract degenerate differential equations, using both the semigroups generated by multivalued (linear) operators and extensions of the operational method from Da Prato and Grisvard. The authors describe the recent and original results on PDEs and algebraic-differential equations, and establishes the analyzability of the semigroup generated by some degenerate parabolic operators in spaces of continuous functions.


Multilinear Operator Integrals

Multilinear Operator Integrals

Author: Anna Skripka

Publisher: Springer Nature

Published: 2019-12-01

Total Pages: 200

ISBN-13: 3030324060

DOWNLOAD EBOOK

This book provides a comprehensive treatment of multilinear operator integral techniques. The exposition is structured to be suitable for a course on methods and applications of multilinear operator integrals and also as a research aid. The ideas and contributions to the field are surveyed and up-to-date results and methods are presented. Most practical constructions of multiple operator integrals are included along with fundamental technical results and major applications to smoothness properties of operator functions (Lipschitz and Hölder continuity, differentiability), approximation of operator functions, spectral shift functions, spectral flow in the setting of noncommutative geometry, quantum differentiability, and differentiability of noncommutative L^p-norms. Main ideas are demonstrated in simpler cases, while more involved, technical proofs are outlined and supplemented with references. Selected open problems in the field are also presented.


Operator Theory

Operator Theory

Author: Aref Jeribi

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-03-22

Total Pages: 228

ISBN-13: 3110598191

DOWNLOAD EBOOK

This proceedings volume collects select contributions presented at the International Conference in Operator Theory held at Hammamet, Tunisia, on April 30 May 3, 2018. Edited and refereed by well-known experts in the field, this wide-ranging collection of survey and research articles presents the state of the art in the field of operator theory, covering topics such as operator and spectral theory, fixed point theory, functional analysis etc.


Abstract Parabolic Evolution Equations and their Applications

Abstract Parabolic Evolution Equations and their Applications

Author: Atsushi Yagi

Publisher: Springer Science & Business Media

Published: 2009-11-03

Total Pages: 594

ISBN-13: 3642046312

DOWNLOAD EBOOK

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0