Multiscale Mechanobiology in Tissue Engineering

Multiscale Mechanobiology in Tissue Engineering

Author: Damien Lacroix

Publisher: Springer

Published: 2018-07-31

Total Pages: 212

ISBN-13: 9811080755

DOWNLOAD EBOOK

This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture within a scaffold. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, this work provides a novel approach to the use of engineering tools for the optimization of biological processes and its application to regenerative medicine. The volume is a valuable resource for researchers and graduate students studying mechanobiology and tissue engineering. For undergraduate students it also provides deep insight into tissue engineering and its use in the design of bioreactors. The book is supplemented with extensive references for all chapters to help the reader to progress through the study of each topic.


Multiscale Mechanobiology of Bone Remodeling and Adaptation

Multiscale Mechanobiology of Bone Remodeling and Adaptation

Author: Peter Pivonka

Publisher: Springer

Published: 2017-06-20

Total Pages: 295

ISBN-13: 3319588451

DOWNLOAD EBOOK

The book presents state-of-the-art developments in multiscale modeling and latest experimental data on multiscale mechanobiology of bone remodeling and adaptation including fracture healing applications. The multiscale models include musculoskeletal models describing bone-muscle interactions during daily activities such as walking or running, micromechanical models for estimation of bone mechanical properties, bone remodeling and adaptation models, cellular models describing the complex bone-cell interactions taking into account biochemical and biomechanical regulatory factors. Also subcellular processes are covered including arrangement of actin filaments due to mechanical loading and change of receptor configurations.


Mechanobiology in Health and Disease

Mechanobiology in Health and Disease

Author: Stefaan Verbruggen

Publisher: Academic Press

Published: 2018-08-09

Total Pages: 530

ISBN-13: 0128129530

DOWNLOAD EBOOK

Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science


Computational Modeling in Tissue Engineering

Computational Modeling in Tissue Engineering

Author: Liesbet Geris

Publisher: Springer Science & Business Media

Published: 2012-10-30

Total Pages: 438

ISBN-13: 3642325637

DOWNLOAD EBOOK

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.


Advances in Biomedical Engineering Research and Application: 2012 Edition

Advances in Biomedical Engineering Research and Application: 2012 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-12-26

Total Pages: 816

ISBN-13: 1464991537

DOWNLOAD EBOOK

Advances in Biomedical Engineering Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Biomedical Engineering. The editors have built Advances in Biomedical Engineering Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Biomedical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Biomedical Engineering Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Multiscale Modelling in Biomedical Engineering

Multiscale Modelling in Biomedical Engineering

Author: Dimitrios I. Fotiadis

Publisher: John Wiley & Sons

Published: 2023-06-07

Total Pages: 404

ISBN-13: 1119517346

DOWNLOAD EBOOK

Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.


Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Author: Amit Gefen

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 397

ISBN-13: 3642364829

DOWNLOAD EBOOK

This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.


3D Lung Models for Regenerating Lung Tissue

3D Lung Models for Regenerating Lung Tissue

Author: Gunilla Westergren-Thorsson

Publisher: Academic Press

Published: 2022-08-10

Total Pages: 262

ISBN-13: 0323908721

DOWNLOAD EBOOK

3D Lung Models for Regenerating Lung Tissue is a comprehensive summary on the current state of art 3D lung models and novel techniques that can be used to regenerate lung tissue. Written by experts in the field, readers can expect to learn more about 3D lung models, novel techniques including bioprinting and advanced imaging techniques, as well as important knowledge about the complexity of the lung and its extracellular matrix composition. Structured into 15 different chapters, the book spans from the original 2D cell culture model on plastic, to advanced 3D lung models such as using human extracellular matrix protein. In addition, the last chapters cover new techniques including 3D printing, bioprinting, and artificial intelligence that can be used to drive the field forward and some future perspectives. This highly topical book with chapters on everything from the complexity of the lung and its microenvironment to cutting-edge 3D lung models, represents an exciting body of work that can be used by researchers during study design, grant writing, as teaching material, or to stay updated with the progression of the field. - A comprehensive summary of advanced 3D lung models written by the experts in the respiratory field - Explore novel techniques that can be used to evaluate and improve 3D lung models, including techniques such as 3D printing, bioprinting, and artificial intelligence - Explains what extracellular matrix is, the complexity of the lung microenvironment, and why this knowledge is important for creating a functional bioartificial lung


Multi-scale Extracellular Matrix Mechanics and Mechanobiology

Multi-scale Extracellular Matrix Mechanics and Mechanobiology

Author: Yanhang Zhang

Publisher: Springer

Published: 2019-07-12

Total Pages: 401

ISBN-13: 3030201821

DOWNLOAD EBOOK

This book describes the current state of knowledge in the field of multi-scale ECM mechanics and mechanobiology with a focus on experimental and modelling studies in biomechanical characterization, advanced optical microscopy and imaging, as well as computational modeling. This book also discusses the scale dependency of ECM mechanics, translation of mechanical forces from tissue to cellular level, and advances and challenges in improving our understanding of cellular mechanotransduction in the context of living tissues and organisms.


Encyclopedia of Biomedical Engineering

Encyclopedia of Biomedical Engineering

Author:

Publisher: Elsevier

Published: 2018-09-01

Total Pages: 2069

ISBN-13: 0128051442

DOWNLOAD EBOOK

Encyclopedia of Biomedical Engineering, Three Volume Set is a unique source for rapidly evolving updates on topics that are at the interface of the biological sciences and engineering. Biomaterials, biomedical devices and techniques play a significant role in improving the quality of health care in the developed world. The book covers an extensive range of topics related to biomedical engineering, including biomaterials, sensors, medical devices, imaging modalities and imaging processing. In addition, applications of biomedical engineering, advances in cardiology, drug delivery, gene therapy, orthopedics, ophthalmology, sensing and tissue engineering are explored. This important reference work serves many groups working at the interface of the biological sciences and engineering, including engineering students, biological science students, clinicians, and industrial researchers. Provides students with a concise description of the technologies at the interface of the biological sciences and engineering Covers all aspects of biomedical engineering, also incorporating perspectives from experts working within the domains of biomedicine, medical engineering, biology, chemistry, physics, electrical engineering, and more Contains reputable, multidisciplinary content from domain experts Presents a ‘one-stop’ resource for access to information written by world-leading scholars in the field