Multiresolution Joint Source and Channel Coding for Wireless Communications

Multiresolution Joint Source and Channel Coding for Wireless Communications

Author: 王徐芳

Publisher: Open Dissertation Press

Published: 2017-01-27

Total Pages:

ISBN-13: 9781374746251

DOWNLOAD EBOOK

This dissertation, "Multiresolution Joint Source and Channel Coding for Wireless Communications" by 王徐芳, Xufang, Wang, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b3122529 Subjects: Wireless communication systems Mobile communication systems Radio - Transmitters and transmission


Optimal Multiresolution Quantization for Broadcast Channels with Random Index Assignment

Optimal Multiresolution Quantization for Broadcast Channels with Random Index Assignment

Author: Fei Teng

Publisher:

Published: 2010

Total Pages: 56

ISBN-13:

DOWNLOAD EBOOK

Shannon's classical separation result holds only in the limit of infinite source code dimension and infinite channel code block length. In addition, Shannon theory does not address the design of good source codes when the probability of channel error is nonzero, which is inevitable for finite-length channel codes. Thus, for practical systems, a joint source and channel code design could improve performance for finite dimension source code and finite block length channel code, as well as complexity and delay. Consider a multicast system over a broadcast channel, where different end users typically have different capacities. To support such user or capacity diversity, it is desirable to encode the source to be broadcasted into a scalable bit stream along which multiple resolutions of the source can be reconstructed progressively from left to right. Such source coding technique is called multiresolution source coding. In wireless communications, joint source channel coding (JSCC) has attracted wide attention due to its adaptivity to time-varying channels. However, there are few works on joint source channel coding for network multicast, especially for the optimal source coding over broadcast channels. In this work, we aim at designing and analyzing the optimal multiresolution vector quantization (MRVQ) in conjunction with the subsequent broadcast channel over which the coded scalable bit stream would be transmitted. By adopting random index assignment (RIA) to link MRVQ for the source with superposition coding for the broadcast channel, we establish a closed-form formula of end-to-end distortion for a tandem system of MRVQ and a broadcast channel. From this formula we analyze the intrinsic structure of end-to-end distortion (EED) in a communication system and derive two necessary conditions for optimal multiresolution vector quantization over broadcast channels with random index assignment. According to the two necessary conditions, we propose a greedy iterative algorithm for jointly designed MRVQ with channel conditions, which depends on the channel only through several types of average channel error probabilities rather than the complete knowledge of the channel.


Joint Source-Channel Coding

Joint Source-Channel Coding

Author: Andres Kwasinski

Publisher: John Wiley & Sons

Published: 2022-11-08

Total Pages: 404

ISBN-13: 1118693795

DOWNLOAD EBOOK

Joint Source-Channel Coding Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems


Space-Time Coding for Broadband Wireless Communications

Space-Time Coding for Broadband Wireless Communications

Author: Georgios B. Giannakis

Publisher: John Wiley & Sons

Published: 2007-02-26

Total Pages: 488

ISBN-13: 047146287X

DOWNLOAD EBOOK

Eine vielversprechende Technologie zur Maximierung der Bandbreiteneffizienz in der breitbandigen drahtlosen Kommunikation ist die Raum-Zeit-Kodierung. Theorie und Praxis verbindend, ist dieses Buch die erste umfassende Diskussion von Grundlagen und designorientierten Aspekten von Raum-Zeit-Codes. Single-Carrier und Multi-Carrier-Übertragungen für Einzel- und Mehrnutzerkommunikation werden behandelt.


Joint Source-Channel Decoding

Joint Source-Channel Decoding

Author: Pierre Duhamel

Publisher: Academic Press

Published: 2009-11-26

Total Pages: 337

ISBN-13: 0080922449

DOWNLOAD EBOOK

Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. Treats joint source and channel decoding in an integrated way Gives a clear description of the problems in the field together with the mathematical tools for their solution Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks


Joint Source-Channel Coding of Discrete-Time Signals with Continuous Amplitudes

Joint Source-Channel Coding of Discrete-Time Signals with Continuous Amplitudes

Author: Norbert Goertz

Publisher: Imperial College Press

Published: 2007

Total Pages: 207

ISBN-13: 1860948464

DOWNLOAD EBOOK

This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation. The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation. Although Information Theory is not the main topic of the book OCo in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem OCo this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book. Sample Chapter(s). Chapter 1: Introduction (98 KB). Contents: Joint Source-Channel Coding: An Overview; Joint Source-Channel Decoding; Channel-Adaptive Scaled Vector Quantization; Index Assignments for Multiple Descriptions Vector Quantizers; Source-Adaptive Modulation; Source-Adaptive Power Allocation; Appendices: Theoretical Performance Limits; Optimal Decoder for a Given Encoder; Symbol Error Probabilities for M-PSK; Derivative of the Expected Distortion for SAM. Readership: Students at advanced undergraduate and graduate level; practitioners and academics in Electrical and Communications Engineering, Information Technology and Computer Science."


Digital Communications 1

Digital Communications 1

Author: Didier Le Ruyet

Publisher: John Wiley & Sons

Published: 2015-10-02

Total Pages: 404

ISBN-13: 1119232449

DOWNLOAD EBOOK

The communication chain is constituted by a source and a recipient, separated by a transmission channel which may represent a portion of cable, an optical fiber, a radio channel, or a satellite link. Whatever the channel, the processing blocks implemented in the communication chain have the same foundation. This book aims to itemize. In this first volume, after having presented the base of the information theory, we will study the source coding techniques with and without loss. Then we analyze the correcting codes for block errors, convutional and concatenated used in current systems.