The Nuclear Many-Body Problem
Author: Peter Ring
Publisher: Springer Science & Business Media
Published: 2004-03-25
Total Pages: 742
ISBN-13: 9783540212065
DOWNLOAD EBOOKStudy Edition
Read and Download eBook Full
Author: Peter Ring
Publisher: Springer Science & Business Media
Published: 2004-03-25
Total Pages: 742
ISBN-13: 9783540212065
DOWNLOAD EBOOKStudy Edition
Author: Jerzy Bartke
Publisher: World Scientific
Published: 2009
Total Pages: 239
ISBN-13: 9810212313
DOWNLOAD EBOOKThis book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
Author: Rudolph C. Hwa
Publisher: World Scientific
Published: 2004
Total Pages: 786
ISBN-13: 9812795537
DOWNLOAD EBOOKAnnotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.
Author: James Binney
Publisher: Oxford University Press, USA
Published: 2013-12
Total Pages: 408
ISBN-13: 0199688575
DOWNLOAD EBOOKThis title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Author: Vincenzo Barone
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 414
ISBN-13: 3662047241
DOWNLOAD EBOOKA comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers soft hadron—hadron scattering in a complete and mature presentation. It can be used as a textbook in particle physics classes. Chapters 8-11 address graduate students as well as researchers, covering the "new diffraction": the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes.
Author: Paul Adrien Maurice Dirac
Publisher: Oxford University Press
Published: 1981
Total Pages: 340
ISBN-13: 9780198520115
DOWNLOAD EBOOKThe first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
Author: Palash B. Pal
Publisher: Taylor & Francis
Published: 2014-07-29
Total Pages: 818
ISBN-13: 1482216981
DOWNLOAD EBOOKFor graduate students unfamiliar with particle physics, An Introductory Course of Particle Physics teaches the basic techniques and fundamental theories related to the subject. It gives students the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. In giving students a taste of fundamental interactions among elementary particles, the author does not assume any prior knowledge of quantum field theory. He presents a brief introduction that supplies students with the necessary tools without seriously getting into the nitty-gritty of quantum field theory, and then explores advanced topics in detail. The book then discusses group theory, and in this case the author assumes that students are familiar with the basic definitions and properties of a group, and even SU(2) and its representations. With this foundation established, he goes on to discuss representations of continuous groups bigger than SU(2) in detail. The material is presented at a level that M.Sc. and Ph.D. students can understand, with exercises throughout the text at points at which performing the exercises would be most beneficial. Anyone teaching a one-semester course will probably have to choose from the topics covered, because this text also contains advanced material that might not be covered within a semester due to lack of time. Thus it provides the teaching tool with the flexibility to customize the course to suit your needs.
Author: Fred Jegerlehner
Publisher: Springer Science & Business Media
Published: 2008
Total Pages: 433
ISBN-13: 3540726330
DOWNLOAD EBOOKThis book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.
Author: Jorge Casalderrey-Solana
Publisher: Cambridge University Press
Published: 2023-07-31
Total Pages: 469
ISBN-13: 1009403494
DOWNLOAD EBOOKAuthor: Harald Paganetti
Publisher: CRC Press
Published: 2016-04-19
Total Pages: 691
ISBN-13: 1439836450
DOWNLOAD EBOOKProton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.