The first non-electromagnetic messengers from space were discovered in the early 20th century, but it is only now that multimessenger astronomy is coming into its own. The aim of Multimessenger Astronomy in Practice is to aid an astronomer who is new to research in a particular area of multimessenger astronomy. Covering electromatic radiation from radio through to gamma-rays, and moving on to neutrino, cosmic-ray and gravitational wave astronomy, it gives the reader an overview of the celestial objects detected in each region, the unique methods used to measure them, as well as the principles and methods of data collection, calibration, reduction and analysis. Further chapters cover dark matter, the multimessenger search for extraterrestrial intelligence (SETI), and data science with machine learning. The book will help educate astronomy students taking a multimessenger approach, and add to the knowledge of professional astronomers about what is available in today's multimessenger toolbox. Key Features: Prepares astronomers new to research in a particular area of multimessenger astronomy Covers modern astrophysics across the electromatic spectrum from radio through to gamma-rays, as well as neutrino, cosmic-ray and gravitational wave astronomy Details the celestial objects detected in each region, the detection methods used, and the principles and methods of data collection, calibration, reduction and analysis Includes chapters on dark matter, the multimessenger search for extraterrestrial intelligence (SETI), and data science with machine learning
Written by a professional astronomer who has worked on a wide spectrum of topics throughout his career, this book gives a popular science level description of what has become known as multimessenger astronomy. It links the new with the traditional, showing how astronomy has advanced at increasing pace in the modern era. In the second decade of the twenty-first century astronomy has seen the beginnings of a revolution. After centuries when all our information about the Universe has come via electromagnetic waves, now several entirely new ways of exploring it have emerged. The most spectacular has been the detection of gravitational waves in 2015, but astronomy also uses neutrinos and cosmic ray particles to probe processes in the centres of stars and galaxies. The book is strongly oriented towards measurement and technique. Widely illustrated with colourful pictures of instruments, their creators and astronomical objects, it is backed with descriptions of the underlying theories and concepts, linking predictions, observations and experiments. The thread is largely historical, although obviously it cannot be encyclopaedic. Its point of departure is the beginning of the twentieth century and it aims at being as complete as possible for the date of completion at the end of 2020. The book addresses a wide public whose interest in science is served by magazines like Scientific American: lively, intelligent readers but without university studies in physics.
Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interactions — over the widest range of densities occurring in the Universe. This book provides a self-contained account of neutron star properties, microscopic nuclear dynamics and the recent observational developments in multimessenger astronomy. It also discusses the unprecedented possibilities to shed light on long standing and fundamental issues, such as the validity of the description of matter in terms of pointlike baryons and leptons and the appearance of deconfined quarks in the high density regime. It will be of interest to researchers and advanced PhD students working in the fields of Astrophysics, Gravitational Physics, Nuclear Physics and Particle Physics. Key Features: Reviews state-of-the-art theoretical and experimental developments Self-contained and cross-disciplinary While being devoted to a very lively and fast developing field, the book fundamentally addresses methodological issues. Therefore, it will not be subject to fast obsolescence. Omar Benhar is an INFN Emeritus Research Director, and has been teaching Relativistic Quantum Mechanics, Quantum Electrodynamics and Structure of Compact Stars at “Sapienza” University of Rome for over twenty years. He has worked extensively in the United States, and since 2013 has served as an adjunct professor at the Center for Neutrino Physics of Virginia Polytechnic Institute and State University. Prof. Benhar has authored or co-authored three textbooks on Relativistic Quantum Mechanics, Gauge Theories, and Structure and Dynamics of Compact Stars, and published more than one hundred scientific papers on the theory of many-particle systems, the structure of compact stars and the electroweak interactions of nuclei. Alessandro Lovato is a physicist at Argonne National Laboratory and an INFN researcher in Trento. His research in theoretical nuclear physics focuses on consistently modeling the self-emerging properties of atomic nuclei and neutron-star matter in terms of the microscopic interactions among the constituent protons and neutrons. He has co-authored more than eighty scientific publications on the theory of many-particle systems, the structure of compact stars, and the electroweak interactions of nuclei. He is at the forefront of high-performance computing applied to solving the quantum many-body problem. Andrea Maselli is an Associate Professor at the Gran Sasso Science Institute, in L’Aquila, where he teaches Gravitation and Cosmology and Physics of Black Hole. His research focuses on strong gravity, which plays a crucial role in many astrophysical phenomena involving black hole and neutron stars, representing natural laboratories to test fundamental physics. Prof. Maselli has co-authored more than eighty scientific papers on the modelling of black holes and neutron stars in General Relativity and extension thereof, their gravitational wave emission, and on tests of gravity in the strong filed regime. He is active in various collaborations aimed at developing next generation of gravitational wave detectors, such as the LISA satellite, the Einstein Telescope, and the Lunar Gravitational Wave Antenna. Francesco Pannarale is an Associate Professor at “Sapienza” Univeristy of Rome, where he teaches Gravitational Waves, Compact Objects and Black Holes, Computing Methods for Physics, and Electromagnetism. His research interests are in gravitational-wave physics and multimessenger astronomy, and they range from modelling compact binary sources to data analysis. He has co-authored over one hundred and eighty scientific publications and was at the forefront of the joint observation of GW170817 and GRB 170817A. He is currently serving as co-chair of the LIGO-Virgo-KAGRA Data Analysis Council.
Review of Volume 4:'The Handbook can be a good reference for a higher-degree science student approaching the subject or for an expert in a similar field in astronomical instrumentation. The reader requiring an in-depth presentation of a specific topic will be guided by the rich reference lists included at the end of each chapter.'The ObservatoryOur goal is to produce a comprehensive handbook of the current state of the art of astronomical instrumentation with a forward view encompassing the next decade. The target audience is graduate students with an interest in astronomical instrumentation, as well as practitioners interested in learning about the state of the art in another wavelength band or field closely related to the one in which they currently work. We assume a working knowledge of the fundamental theory: optics, semiconductor physics, etc. The purpose of this handbook is to bring together some of the leading experts in the world to discuss the frontier of astronomical instrumentation across the electromagnetic spectrum and extending into multimessenger astronomy.
Conflicting Models for the Origin of Life Conflicting Models for the Origin of Life provides a forum to compare and contrast the many hypotheses that have been put forward to explain the origin of life. There is a revolution brewing in the field of Origin of Life: in the process of trying to figure out how Life started, many researchers believe there is an impending second creation of life, not necessarily biological. Up-to-date understanding is needed to prepare us for the technological, and societal changes it would bring. Schrodinger’s 1944 “What is life?” included the insight of an information carrier, which inspired the discovery of the structure of DNA. In “Conflicting Models of the Origin of Life” a selection of the world’s experts are brought together to cover different aspects of the research: from progress towards synthetic life – artificial cells and sub-cellular components, to new definitions of life and the unexpected places life could (have) emerge(d). Chapters also cover fundamental questions of how memory could emerge from memoryless processes, and how we can tell if a molecule may have emerged from life. Similarly, cutting-edge research discusses plausible reactions for the emergence of life both on Earth and on exoplanets. Additional perspectives from geologists, philosophers and even roboticists thinking about the origin of life round out this volume. The text is a state-of-the-art snapshot of the latest developments on the emergence of life, to be used both in graduate classes and by citizen scientists. Audience Researchers in any area of astrobiology, as well as others interested in the origins of life, will find a modern and current review of the field and the current debates and obstacles. This book will clearly illustrate the current state-of-the-art and engage the imagination and creativity of experts across many disciplines.
Explores the methods, instruments, and observations of the ancient astronomers, noting their significance to modern science and the importance of such findings as Stonehenge and American Indian petroglyphs
In our world today, scientists and technologists speak one language of reality. Everyone else, whether they be prime ministers, lawyers, or primary school teachers speak an outdated Newtonian language of reality. While Newton saw time and space as rigid and absolute, Einstein showed that time is relative – it depends on height and velocity – and that space can stretch and distort. The modern Einsteinian perspective represents a significant paradigm shift compared with the Newtonian paradigm that underpins most of the school education today. Research has shown that young learners quickly access and accept Einsteinian concepts and the modern language of reality. Students enjoy learning about curved space, photons, gravitational waves, and time dilation; often, they ask for more! A consistent education within the Einsteinian paradigm requires rethinking of science education across the entire school curriculum, and this is now attracting attention around the world. This book brings together a coherent set of chapters written by leading experts in the field of Einsteinian physics education. The book begins by exploring the fundamental concepts of space, time, light, and gravity and how teachers can introduce these topics at an early age. A radical change in the curriculum requires new learning instruments and innovative instructional approaches. Throughout the book, the authors emphasise and discuss evidence-based approaches to Einsteinian concepts, including computer- based tools, geometrical methods, models and analogies, and simplified mathematical treatments. Teaching Einsteinian Physics in Schools is designed as a resource for teacher education students, primary and secondary science teachers, and for anyone interested in a scientifically accurate description of physical reality at a level appropriate for school education.
This handbook provides an updated comprehensive description of gravitational wave astronomy. In the first part, it reviews gravitational wave experiments, from ground and space based laser interferometers to pulsar timing arrays and indirect detection from the cosmic microwave background. In the second part, it discusses a number of astrophysical and cosmological gravitational wave sources, including black holes, neutron stars, possible more exotic objects, and sources in the early Universe. The third part of the book reviews the methods to calculate gravitational waveforms. The fourth and last part of the book covers techniques employed in gravitational wave astronomy data analysis. This book represents both a valuable resource for graduate students and an important reference for researchers in gravitational wave astronomy.
The steering committee was specifically asked to (1) provide an overview of the current state of astronomy and astrophysics science, and technology research in support of that science, with connections to other scientific areas where appropriate; (2) identify the most compelling science challenges and frontiers in astronomy and astrophysics, which shall motivate the committee’s strategy for the future; (3) develop a comprehensive research strategy to advance the frontiers of astronomy and astrophysics for the period 2022-2032 that will include identifying, recommending, and ranking the highest-priority research activities; (4) utilize and recommend decision rules, where appropriate, that can accommodate significant but reasonable deviations in the projected budget or changes in urgency precipitated by new discoveries or unanticipated competitive activities; (5) assess the state of the profession, including workforce and demographic issues in the field, identify areas of concern and importance to the community, and where possible, provide specific, actionable, and practical recommendations to the agencies and community to address these areas. This report proposes a broad, integrated plan for space- and ground-based astronomy and astrophysics for the decade 2023-2032. It also lays the foundations for further advances in the following decade.