Multihop Mobile Wireless Networks discusses issues pertaining to each of these networks and proposes novel and innovative algorithms on Scheduling, Routing and Data aggregation that are viable solutions for multihop mobile networks.
This book provides an introduction to opportunistic routing an emerging technology designed to improve the packet forwarding reliability, network capacity and energy efficiency of multihop wireless networks This book presents a comprehensive background to the technological challenges lying behind opportunistic routing. The authors cover many fundamental research issues for this new concept, including the basic principles, performance limit and performance improvement of opportunistic routing compared to traditional routing, energy efficiency and distributed opportunistic routing protocol design, geographic opportunistic routing, opportunistic broadcasting, and security issues associated with opportunistic routing, etc. Furthermore, the authors discuss technologies such as multi-rate, multi-channel, multi-radio wireless communications, energy detection, channel measurement, etc. The book brings together all the new results on this topic in a systematic, coherent and unified presentation and provides a much needed comprehensive introduction to this topic. Key Features: Addresses opportunistic routing, an emerging technology designed to improve the packet forwarding reliability, network capacity and energy efficiency of multihop wireless networks Discusses the technological challenges lying behind this new technology, and covers a wide range of practical implementation issues Explores many fundamental research issues for this new concept, including the basic principles of opportunistic routing, performance limits and performance improvement, and compares them to traditional routing (e.g. energy efficiency and distributed opportunistic routing protocol design, broadcasting, and security issues) Covers technologies such as multi-rate, multi-channel, multi-radio wireless communications, energy detection, channel measurement, etc. This book provides an invaluable reference for researchers working in the field of wireless networks and wireless communications, and Wireless professionals. Graduate students will also find this book of interest.
This book provides an introduction to opportunistic routing an emerging technology designed to improve the packet forwarding reliability, network capacity and energy efficiency of multihop wireless networks This book presents a comprehensive background to the technological challenges lying behind opportunistic routing. The authors cover many fundamental research issues for this new concept, including the basic principles, performance limit and performance improvement of opportunistic routing compared to traditional routing, energy efficiency and distributed opportunistic routing protocol design, geographic opportunistic routing, opportunistic broadcasting, and security issues associated with opportunistic routing, etc. Furthermore, the authors discuss technologies such as multi-rate, multi-channel, multi-radio wireless communications, energy detection, channel measurement, etc. The book brings together all the new results on this topic in a systematic, coherent and unified presentation and provides a much needed comprehensive introduction to this topic. Key Features: Addresses opportunistic routing, an emerging technology designed to improve the packet forwarding reliability, network capacity and energy efficiency of multihop wireless networks Discusses the technological challenges lying behind this new technology, and covers a wide range of practical implementation issues Explores many fundamental research issues for this new concept, including the basic principles of opportunistic routing, performance limits and performance improvement, and compares them to traditional routing (e.g. energy efficiency and distributed opportunistic routing protocol design, broadcasting, and security issues) Covers technologies such as multi-rate, multi-channel, multi-radio wireless communications, energy detection, channel measurement, etc. This book provides an invaluable reference for researchers working in the field of wireless networks and wireless communications, and Wireless professionals. Graduate students will also find this book of interest.
Wifi, WiMAX, and Cellular Multihop Networks presents an overview of WiFi-based and WiMAX-based multihop relay networks. As the first text to cover IEEE 802.16j multihop hop relay technology, this revolutionary resource explores the latest advances in multi-hop and ad-hoc networking. Not only does this reference provide the technological aspects, but also the applications for the emerging technology and architectural issues. Ranging from introductory material to advanced topics, this guidebook is essential for engineers, researchers, and students interested in learning more about WiFi and WiMAX multihop relay networks.
The rapid development of wireless digital communication technology has cre ated capabilities that software systems are only beginning to exploit. The falling cost of both communication and of mobile computing devices (laptop computers, hand-held computers, etc. ) is making wireless computing affordable not only to business users but also to consumers. Mobile computing is not a "scaled-down" version of the established and we- studied field of distributed computing. The nature of wireless communication media and the mobility of computers combine to create fundamentally new problems in networking, operating systems, and information systems. Further more, many of the applications envisioned for mobile computing place novel demands on software systems. Although mobile computing is still in its infancy, some basic concepts have been identified and several seminal experimental systems developed. This book includes a set of contributed papers that describe these concepts and sys tems. Other papers describe applications that are currently being deployed and tested. The first chapter offers an introduction to the field of mobile computing, a survey of technical issues, and a summary of the papers that comprise sub sequent chapters. We have chosen to reprint several key papers that appeared previously in conference proceedings. Many of the papers in this book are be ing published here for the first time. Of these new papers, some are expanded versions of papers first presented at the NSF-sponsored Mobidata Workshop on Mobile and Wireless Information Systems, held at Rutgers University on Oct 31 and Nov 1, 1994.
Annotation The most common complaints of today's cell phone users are poor reception, a lost signal that cuts off a call, and the inability to put a call through. Today's wireless providers struggle to ensure these problems do not occur. This book is an in-depth examination of two of the hottest research areas relating to these challenges: location management and mobile wireless routing
This brief provides an overview of recent developments in multi-hop routing protocols for Wireless Sensor Networks (WSNs). It introduces the various classifications of routing protocols and lists the pros and cons of each category, going beyond the conceptual overview of routing classifications offered in other books. Recently many researchers have proposed numerous multi-hop routing protocols and thereby created a need for a book that provides its readers with an up-to-date road map of this research paradigm. The authors present some of the most relevant results achieved by applying an algorithmic approach to the research on multi-hop routing protocols. The book covers measurements, experiences and lessons learned from the implementation of multi-hop communication prototypes. Furthermore, it describes future research challenges and as such serves as a useful guide for students and researchers alike.
Overview and Goals Wireless communication technologies are undergoing rapid advancements. The last few years have experienced a steep growth in research in the area of wireless sensor networks (WSNs). In WSNs, communication takes place with the help of spatially distributedautonomoussensornodesequippedtosensespeci?cinformation. WSNs, especially the ones that have gained much popularity in the recent years, are, ty- cally, ad hoc in nature and they inherit many characteristics/features of wireless ad hoc networks such as the ability for infrastructure-less setup, minimal or no reliance on network planning, and the ability of the nodes to self-organize and self-con?gure without the involvement of a centralized network manager, router, access point, or a switch. These features help to set up WSNs fast in situations where there is no existing network setup or in times when setting up a ?xed infrastructure network is considered infeasible, for example, in times of emergency or during relief - erations. WSNs ?nd a variety of applications in both the military and the civilian population worldwide such as in cases of enemy intrusion in the battle?eld, object tracking, habitat monitoring, patient monitoring, ?re detection, and so on. Even though sensor networks have emerged to be attractive and they hold great promises for our future, there are several challenges that need to be addressed. Some of the well-known challenges are attributed to issues relating to coverage and deployment, scalability, quality-of-service, size, computational power, energy ef?ciency, and security.
Multihop Mobile Wireless Networks discusses issues pertaining to each of these networks and proposes novel and innovative algorithms on Scheduling, Routing and Data aggregation that are viable solutions for multihop mobile networks.
The huge and growing demand for wireless communication systems has spurred a massive effort on the parts of the computer science and electrical engineering communities to formulate ever-more efficient protocols and algorithms. Written by a respected figure in the field, Handbook of Wireless Networks and Mobile Computing is the first book to cover the subject from a computer scientist's perspective. It provides detailed practical coverage of an array of key topics, including cellular networks, channel assignment, queuing, routing, power optimization, and much more.