The Second Edition of this book includes an abundance of examples to illustrate advanced concepts and brings out in a text book setting the algorithms for bivariate polynomial matrix factorization results that form the basis of two-dimensional systems theory. Algorithms and their implementation using symbolic algebra are emphasized.
The past few decades have witnessed an increasing interest in the field of multidimensional systems theory. This is concerned with systems whose trajectories depend not on one single variable (usually interpreted as time or frequency), but on several independent variables, such as the coordinates of an image. The behavioural approach introduced by J. C. Willems provides a particularly suitable framework for developing a linear systems theory in several variables. The book deals with the classical concepts of autonomy, controllability, observability, and stabilizability. All the tests and criteria given are constructive in the sense that algorithmic versions may be implemented in modern computer algebra systems, using Gröbner basis techniques. There is a close connection between multidimensional systems theory and robust control of one-dimensional systems with several uncertain parameters. The central link consists in the basic tool of linear fractional transformations. The book concludes with examples from the theory of electrical networks.
This book deals with the mathematical properties of dimensioned quantities, such as length, mass, voltage, and viscosity. Beginning with a careful examination of how one expresses the numerical results of a measurement and uses these results in subsequent manipulations, the author rigorously constructs the notion of dimensioned numbers and discusses their algebraic structure. The result is a unification of linear algebra and traditional dimensional analysis that can be extended from the scalars to which the traditional analysis is perforce restricted to multidimensional vectors of the sort frequently encountered in engineering, systems theory, economics, and other applications.
Although research on general multidimensional systems theory has been developing rapidly in recent years, this is the first research text to appear on the subject since the early 1980s. The text describes the current state of the art nD systems and sets out a number of open problems, and gives several different perspectives on the subject. It presents a number of different solutions to major theoretical problems as well as some interesting practical results. The book comprises of a selection of plenary and other lectures given at The First International Workshop on Multidimensional (nD) Systems (NDS-98) held in 1998 in Poland, and is written by leading world specialists in the field.
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.
At first glance, this might appear to be a book on mathematics, but it is really intended for the practical engineer who wishes to gain greater control of the multidimensional mathematical models which are increasingly an important part of his environment. Another feature of the book is that it attempts to balance left- and right-brain perceptions; the author has noticed that many graph theory books are disturbingly light on actual topological pictures of their material. One thing that this book is not is a depiction of the Theory of Constraints, as defined by Eliyahu Goldratt in the 1980’s. Constraint Theory was originally defined by the author in his PhD dissertation in 1967 and subsequent papers written over the following decade. It strives to employ more of a mathematical foundation to complexity than the Theory of Constraints. This merely attempts to differentiate this book from Goldratt’s work, not demean his efforts. After all, the main body of work in the field of 1 Systems Engineering is still largely qualitative .
First thorough treatment of multidimensional item response theory Description of methods is supported by numerous practical examples Describes procedures for multidimensional computerized adaptive testing
This book presents a new approach to the analysis of networks, which emphasizes how one can compress a network while preserving all information relative to the network's spectrum. Besides these compression techniques, the authors introduce a number of other isospectral transformations and demonstrate how, together, these methods can be applied to gain new results in a number of areas. This includes the stability of time-delayed and non time-delayed dynamical networks, eigenvalue estimation, pseudospectra analysis and the estimation of survival probabilities in open dynamical systems. The theory of isospectral transformations, developed in this text, can be readily applied in any area that involves the analysis of multidimensional systems and is especially applicable to the analysis of network dynamics. This book will be of interest to Mathematicians, Physicists, Biologists, Engineers and to anyone who has an interest in the dynamics of networks.
Several decades of psychometric research have led to the development of sophisticated models for multidimensional test data, and in recent years, multidimensional item response theory (MIRT) has become a burgeoning topic in psychological and educational measurement. Considered a cutting-edge statistical technique, the methodology underlying MIRT can be complex, and therefore doesn’t receive much attention in introductory IRT courses. However author Wes Bonifay shows how MIRT can be understood and applied by anyone with a firm grounding in unidimensional IRT modeling. His volume includes practical examples and illustrations, along with numerous figures and diagrams. Multidimensional Item Response Theory includes snippets of R code interspersed throughout the text (with the complete R code included on an accompanying website) to guide readers in exploring MIRT models, estimating the model parameters, generating plots, and implementing the various procedures and applications discussed throughout the book.