Throughout the last decades, the increasing development of the urban metropolis and the need to establish fundamental infrastructure networks, promoted the development of important projects worldwide and several Multi-Span Large Bridges have been erected. Certainly, many more will be erected in the next decades. This international context undoubted
This book reports on current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques and methods for bridge design, construction and monitoring. Based on extended and revised papers selected from outstanding presentation at the Istanbul Bridge Conference 2018, held from November 5 – 6, 2018, in Istanbul, Turkey, and by highlighting major bridge studies, spanning from numerical and modeling studies to the applications of new construction techniques and monitoring systems, this book is intended to promote high standards in modern bridge engineering. It offers a timely reference to both academics and professionals in this field.
The ever-increasing traffic demands, coupled with deteriorating condition of bridge structures, present great challenges for maintaining a healthy transportation network. The challenges encompass a wide range of economic, environmental, and social constraints that go beyond the technical boundaries of bridge engineering. Those constraints compound
Fourteen years on from its last edition, Cable Supported Bridges: Concept and Design, Third Edition, has been significantly updated with new material and brand new imagery throughout. Since the appearance of the second edition, the focus on the dynamic response of cable supported bridges has increased, and this development is recognised with two new chapters, covering bridge aerodynamics and other dynamic topics such as pedestrian-induced vibrations and bridge monitoring. This book concentrates on the synthesis of cable supported bridges, suspension as well as cable stayed, covering both design and construction aspects. The emphasis is on the conceptual design phase where the main features of the bridge will be determined. Based on comparative analyses with relatively simple mathematical expressions, the different structural forms are quantified and preliminary optimization demonstrated. This provides a first estimate on dimensions of the main load carrying elements to give in an initial input for mathematical computer models used in the detailed design phase. Key features: Describes evolution and trends within the design and construction of cable supported bridges Describes the response of structures to dynamic actions that have attracted growing attention in recent years Highlights features of the different structural components and their interaction in the entire structural system Presents simple mathematical expressions to give a first estimate on dimensions of the load carrying elements to be used in an initial computer input This comprehensive coverage of the design and construction of cable supported bridges provides an invaluable, tried and tested resource for academics and engineers.
Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance, Second Edition, brings together the essentials of bridge engineering across design, assessment, research and construction. Written by an international group of experts, each chapter is divided into two parts: the first covers design issues, while the second presents current research into the innovative design approaches used across the world. This new edition includes new topics such as foot bridges, new materials in bridge engineering and soil-foundation structure interaction. All chapters have been updated to include the latest concepts in design, construction, and maintenance to reduce project cost, increase structural safety, and maximize durability. Code and standard references have been updated. - Completely revised and updated with the latest in bridge engineering and design - Provides detailed design procedures for specific bridges with solved examples - Presents structural analysis including numerical methods (FEM), dynamics, risk and reliability, and innovative structural typologies
This text brings together current knowledge on all aspects of bridge behaviour, covering developments in construction, design, analysis, repair and maintenance. Case histories are used to illustrate the methods used.
Bridge Engineering: Classifications, Design Loading, and Analysis Methods begins with a clear and concise exposition of theory and practice of bridge engineering, design and planning, materials and construction, loads and load distribution, and deck systems. This is followed by chapters concerning applications for bridges, such as: Reinforced and Prestressed Concrete Bridges, Steel Bridges, Truss Bridges, Arch Bridges, Cable Stayed Bridges, Suspension Bridges, Bridge Piers, and Bridge Substructures. In addition, the book addresses issues commonly found in inspection, monitoring, repair, strengthening, and replacement of bridge structures. - Includes easy to understand explanations for bridge classifications, design loading, analysis methods, and construction - Provides an overview of international codes and standards - Covers structural features of different types of bridges, including beam bridges, arch bridges, truss bridges, suspension bridges, and cable-stayed bridges - Features step-by-step explanations of commonly used structural calculations along with worked out examples
This volume deals with the most modern and topical problems of bridge design. The topics presented allow to tackle both theoretical-analytical as well as technical-constructive aspects of the design problem, pointing out how in the case of bridges, specifically for long span bridges, the two aspects are absolutely inseparable. In modern bridges, reasons of technical and economic feasibility oblige an extreme parceling of the construction process, with the consequent need to revise, with respect to the past, both design concepts as well as the theoretical apparatus of analysis that governs it. All this can clearly be derived from reading the present volume, in which the different contributions stress theoretical and technical questions of particular interest and topicality, without claiming to approach them systematically, but offering clear procedural rules and trend indications. With reference to the theoretical approach, some of particular importance are reviewed, such as the possibility of using limit analysis, the simplification of the design process for bridges, durability, and computer aided design. For what concerns the bridge typologies and the corresponding constructive problems, the emphasis is mostly on the ones still in an evolutionary phase, that is long span suspended/stayed bridges and cantilever built bridges with prefabricated segments.