The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases.
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
As the amount of accumulated data across a variety of fields becomes harder to maintain, it is essential for a new generation of computational theories and tools to assist humans in extracting knowledge from this rapidly growing digital data. Global Trends in Intelligent Computing Research and Development brings together recent advances and in depth knowledge in the fields of knowledge representation and computational intelligence. Highlighting the theoretical advances and their applications to real life problems, this book is an essential tool for researchers, lecturers, professors, students, and developers who have seek insight into knowledge representation and real life applications.
Dr. Jay Liebowitz Orkand Endowed Chair in Management and Technology University of Maryland University College Graduate School of Management & Technology 3501 University Boulevard East Adelphi, Maryland 20783-8030 USA jliebowitz@umuc. edu When I first heard the general topic of this book, Marketing Intelligent Systems or what I’ll refer to as Marketing Intelligence, it sounded quite intriguing. Certainly, the marketing field is laden with numeric and symbolic data, ripe for various types of mining—data, text, multimedia, and web mining. It’s an open laboratory for applying numerous forms of intelligentsia—neural networks, data mining, expert systems, intelligent agents, genetic algorithms, support vector machines, hidden Markov models, fuzzy logic, hybrid intelligent systems, and other techniques. I always felt that the marketing and finance domains are wonderful application areas for intelligent systems, and this book demonstrates the synergy between marketing and intelligent systems, especially soft computing. Interactive advertising is a complementary field to marketing where intelligent systems can play a role. I had the pleasure of working on a summer faculty f- lowship with R/GA in New York City—they have been ranked as the top inter- tive advertising agency worldwide. I quickly learned that interactive advertising also takes advantage of data visualization and intelligent systems technologies to help inform the Chief Marketing Officer of various companies. Having improved ways to present information for strategic decision making through use of these technologies is a great benefit.
This book is about synergy in computational intelligence (CI). It is a c- lection of chapters that covers a rich and diverse variety of computer-based techniques, all involving some aspect of computational intelligence, but each one taking a somewhat pragmatic view. Many complex problems in the real world require the application of some form of what we loosely call “intel- gence”fortheirsolution. Fewcanbesolvedbythenaiveapplicationofasingle technique, however good it is. Authors in this collection recognize the li- tations of individual paradigms, and propose some practical and novel ways in which di?erent CI techniques can be combined with each other, or with more traditional computational techniques, to produce powerful probl- solving environments which exhibit synergy, i. e. , systems in which the whole 1 is greater than the sum of the parts . Computational intelligence is a relatively new term, and there is some d- agreement as to its precise de?nition. Some practitioners limit its scope to schemes involving evolutionary algorithms, neural networks, fuzzy logic, or hybrids of these. For others, the de?nition is a little more ?exible, and will include paradigms such as Bayesian belief networks, multi-agent systems, case-based reasoning and so on. Generally, the term has a similar meaning to the well-known phrase “Arti?cial Intelligence” (AI), although CI is p- ceived moreas a “bottom up” approachfrom which intelligent behaviour can emerge,whereasAItendstobestudiedfromthe“topdown”,andderivefrom pondering upon the “meaning of intelligence”. (These and other key issues will be discussed in more detail in Chapter 1.
With the increasing complexity and dynamism in today’s product design and manufacturing, more optimal, robust and practical approaches and systems are needed to support product design and manufacturing activities. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing presents a focused collection of quality chapters on state-of-the-art research efforts in multi-objective evolutionary optimisation, as well as their practical applications to integrated product design and manufacturing. Multi-objective Evolutionary Optimisation for Product Design and Manufacturing consists of two major sections. The first presents a broad-based review of the key areas of research in multi-objective evolutionary optimisation. The second gives in-depth treatments of selected methodologies and systems in intelligent design and integrated manufacturing. Recent developments and innovations in multi-objective evolutionary optimisation make Multi-objective Evolutionary Optimisation for Product Design and Manufacturing a useful text for a broad readership, from academic researchers to practicing engineers.
The 4th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2009), as the name suggests, attracted researchers who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Hybrid intelligent systems have become increasingly po- lar given their capabilities to handle a broad spectrum of real-world complex problems which come with inherent imprecision, uncertainty and vagueness, hi- dimensionality, and nonstationarity. These systems provide us with the opportunity to exploit existing domain knowledge as well as raw data to come up with promising solutions in an effective manner. Being truly multidisciplinary, the series of HAIS conferences offers an interesting research forum to present and discuss the latest th- retical advances and real-world applications in this exciting research field. This volume of Lecture Notes in Artificial Intelligence (LNAI) includes accepted papers presented at HAIS 2009 held at the University of Salamanca, Salamanca, Spain, June 2009. Since its inception, the main aim of the HAIS conferences has been to establish a broad and interdisciplinary forum for hybrid artificial intelligence systems and asso- ated learning paradigms, which are playing increasingly important roles in a large number of application areas.
This book presents an extensive variety of multi-objective problems across diverse disciplines, along with statistical solutions using multi-objective evolutionary algorithms (MOEAs). The topics discussed serve to promote a wider understanding as well as the use of MOEAs, the aim being to find good solutions for high-dimensional real-world design applications. The book contains a large collection of MOEA applications from many researchers, and thus provides the practitioner with detailed algorithmic direction to achieve good results in their selected problem domain.
The Conference Theme was: "Moving Africa forward through Engineering, Technology and Innovation". The conference brought together academics, researchers and industrialists from many disciplines, in particular those that have the most impact on Africa's Development. Most conferences on the continent have covered limited disciplines and therefore the opportunity has been lost sharing information, results and knowledge in a way which can solve the many contentious issues, most of which can be solved through a multidisciplinary approach.