The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Computational chemistry is a means of applying theoretical ideas using computers and a set of techniques for investigating chemical problems within which common questions vary from molecular geometry to the physical properties of substances. Theory and Applications of Computational Chemistry: The First Forty Years is a collection of articles on the emergence of computational chemistry. It shows the enormous breadth of theoretical and computational chemistry today and establishes how theory and computation have become increasingly linked as methodologies and technologies have advanced. Written by the pioneers in the field, the book presents historical perspectives and insights into the subject, and addresses new and current methods, as well as problems and applications in theoretical and computational chemistry. Easy to read and packed with personal insights, technical and classical information, this book provides the perfect introduction for graduate students beginning research in this area. It also provides very readable and useful reviews for theoretical chemists.* Written by well-known leading experts * Combines history, personal accounts, and theory to explain much of the field of theoretical and compuational chemistry* Is the perfect introduction to the field
This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.
The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.
Comprehensive theoretical and experimental analysis of UV-radiation and low energy electron induced phenomena in nucleic acid bases (NABs) and base assemblies are presented in this book. NABs are highly photostable; the absorbed energy is dissipated in the form of ultrafast nonradiative decay. This book highlights the possible mechanisms of these phenomena which is important for all living species and discusses technical challenges in exploration of these processes.
Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. The book is supplemented by an appendix on the Internet.* Presents the widest range of quantum chemical problems covered in one book * Unique structure allows material to be tailored to the specific needs of the reader * Informal language facilitates the understanding of difficult topics
Second Quantization-Based Methods in Quantum Chemistry presents several modern quantum chemical tools that are being applied to electronic states of atoms and molecules. Organized into six chapters, the book emphasizes the quantum chemical methods whose developments and implementations have been presented in the language of second quantization. The opening chapter of the book examines the representation of the electronic Hamiltonian, other quantum-mechanical operators, and state vectors in the second-quantization language. This chapter also describes the unitary transformations among orthonormal orbitals in an especially convenient manner. In subsequent chapters, various tools of second quantization are used to describe many approximation techniques, such as Hartree-Fock, perturbation theory, configuration interaction, multiconfigurational Hartree-Fock, cluster methods, and Green's function. This book is an invaluable source for researchers in quantum chemistry and for graduate-level students who have already taken introductory courses that cover the fundamentals of quantum mechanics through the Hartree-Fock method as applied to atoms and molecules.
The aim of this book is to give a comprehensive treatment of the different methods for the construction of spin eigenfunctions and to show their interrelations. The ultimate goal is the construction of an antisymmetric many-electron wave function that has both spatial and spin parts and the calculation of the matrix elements of the Hamiltonian over the total wave function. The representations of the symmetric group playa central role both in the construction of spin functions and in the calculation of the matrix elements of the Hamiltonian, so this subject will be treated in detail. We shall restrict the treatment to spin-independent Hamiltonians; in this case the spin does not have a direct role in the energy expression, but the choice of spin functions influences the form of spatial functions through the antisymmetry principle; the spatial functions determine the energy of the system. We shall also present the "spin-free quantum chemistry" approach of Matsen and co-workers, in which one starts immediately with the construction of spatial functions that have the correct permutational symmetries. By presenting both the conventional and the spin-free approach, one gains a better understanding of certain aspects of the elec tronic correlation problem. The latest advance in the calculation of the matrix elements of the Hamiltonian is the use of the representations of the unitary group, so this will be the last subject. It is a pleasant task to thank all those who helped in writing this book.