While very useful for studying syntheses of molecular diversity, multi-component reactions also offer rapid access to a variety of complex molecules that are relevant for biological applications. Multi-component Reactions in Molecular Diversity analyzes these reactions, whether they are realized by organometallic, ionic or even radical processes. It highlights popular methods based on monotype reactions (cascade, tandem, domino) and their efficiency and academic industrial domain are illustrated. This book also investigates the most efficient ways to prepare complex molecules. Multi-component reactions are in tune with the concepts of atom and steps economy, which are of prior importance in all the reported processes ? from the laboratory to the pilot scale. The essential criteria for green chemistry are also examined in the book in detail.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Géraldine Masson, Luc Neuville ∙ Carine Bughin ∙ Aude Fayol ∙ Jieping Zhu Multicomponent Syntheses of Macrocycles Thomas J.J. Müller Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles Rachel Scheffelaar ∙ Eelco Ruijter ∙ Romano V.A. Orru Multicomponent Reaction Design Strategies: Towards Scaffold and Stereochemical Diversity Nicola Kielland ∙ Rodolfo Lavilla Recent Developments in Reissert-Type Multicomponent Reactions Jitender B. Bariwal ∙ Jalpa C. Trivedi ∙ Erik V. Van der Eycken Microwave Irradiation and Multicomponent Reactions Irini Akritopoulou-Zanze ∙ Stevan W. Djuric Applications of MCR-Derived Heterocycles in Drug Discovery
Written for advanced undergraduate and graduate students, this textbook makes the main concepts of combinatorial chemistry accessible to the non-specialist.
Addressing a dynamic aspect of organic chemistry, this book describes synthetic strategies and applications for multicomponent reactions – including key routes for synthesizing complex molecules. • Illustrates the crucial role and the important utility of multicomponent reactions (MCRs) to organic syntheses • Compiles novel and efficient synthetic multicomponent procedures to give readers a complete picture of this class of organic reactions • Helps readers to design efficient and practical transformations using multicomponent reaction strategies • Describes reaction background, applications to synthesize complex molecules and drugs, and reaction mechanisms
Presents a wide-ranging overview of essential topics and recent advances in MCR chemistry Heterocycles are a central component in natural product chemistry, pharmaceuticals, agrochemicals, and material science. New synthetic methodologies integrating the sequencing of multicomponent reactions (MCRs) are today being used for the rapid synthesis of diversified heterocycles in just one step. Multicomponent Reactions towards Heterocycles presents an up-to-date summary MCR chemistry with a focus on the conjugation between modern synthetic methodologies and MCRs. Featuring contributions by leaders in the field, this comprehensive resource highlights applications of MCRs in natural products and intermediate synthesis, discusses current trends and future prospects in MCR chemistry, outlines novel multicomponent procedures, and more. The authors provide the practical information required for designing new reaction strategies and mechanisms, covering topics including MCR-based green synthetic methods, cyclization and cycloaddition reactions, heterocycle multicomponent syntheses in a continuous flow, catalytic alkynoyl generation, MCR synthesis of saturated heterocycles, and C–H functionalization and multicomponent reactions. Provides a thorough overview of heterocycles as input in multicomponent reactions Discusses recent advances in the field of MCR chemistry and progress in the synthesis and functionalization of heterocycles Demonstrates the use of MCRs to simplify synthetic design and achieve complexity and diversity in novel bioactive molecules Highlights examples of multicomponent polymerizations, target-oriented synthesis, and applications of MCR in medicinal chemistry Explains the methodology of using on-resin MCRs to produce heterocycle compounds Illustrating the key role of MCRs towards heterocycles in natural product synthesis, drug discovery, organic synthesis, and other applications, Multicomponent Reactions towards Heterocycles is required reading for synthetic chemists in academia and industry alike.
N. Pemberton, E. Chorell, F. Almqvist: Microwave-Assisted Synthesis and Functionalization of 2-Pyridones, 2-Quinolones and other Ring-Fused 2-Pyridones.- M.C. Bagley, M.C. Lubinu: Microwave-Assisted Multicomponent Reactions for the Synthesis of Heterocycles.- T. Besson, V. Thiery: Microwave-Assisted Synthesis of Sulfur and Nitrogen-Containing Heterocycles M. Erdélyi: Solid-Phase Methods for the Microwave-Assisted Synthesis of Heterocycles.- S. Crosignani, B. Linclau: Synthesis of Heterocycles Using Polymer-Supported Reagents under Microwave Irradiation.- B.U.W. Maes: Transition Metal-Based Carbon-Carbon and Carbon-Heteroatom Bond Formation for the Synthesis and Decoration of Heterocycles.- M. Rodriquez and M. Taddei: Synthesis of Heterocycles via Microwave-Assisted Cycloadditions and Cyclocondensations.- N. Kaval, P. Appukkuttan, E. Van der Eycken: The Chemistry of 2-(1H)-Pyrazinones in Solution and on Solid Support
The two volumes "Science of Synthesis: Multicomponent Reactions" critically review the state of the art of domino, sequential, and consecutive multicomponent reactions in what is a highly dynamic field. They serve as the basis for practical application to reach the goals of diversity-oriented synthesis, reaction design, and novel synthetic concepts. As is typical for the Science of Synthesis series, the reference work on multicomponent reactions presents the best synthetic methods as judged by experts in the field and includes typical and general experimental procedures. The volume "Reactions Involving a Carbonyl Compound as Electrophilic Component" covers the following topics: Biginelli Reaction Strecker Reaction Hantzsch Pyridine Synthesis Mannich Reaction Petasis Reaction Willgerodt-Kindler Reaction Kabachnik-Fields Reaction Passerini Reaction Ugi Reaction Gewald Reaction
Advances in Heterocyclic Chemistry, Volume 136 is the latest release in this definitive series in the field of heterocyclic chemistry, one of great importance to organic chemists, polymer chemists, and many biological scientists. Because biology and organic chemistry increasingly intersect, the associated nomenclature is used more frequently in explanations. Written by established authorities in the field from around the world, this comprehensive review combines descriptive synthetic chemistry and mechanistic insight to yield an understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds. - Considered the definitive serial in the field of heterocyclic chemistry - Serves as the go-to reference for organic chemists, polymer chemists and many biological scientists - Provides the latest comprehensive reviews written by established authorities in the field - Combines descriptive synthetic chemistry and mechanistic insights to enhance understanding on how chemistry drives the preparation and useful properties of heterocyclic compounds