The Social Biology of Microbial Communities

The Social Biology of Microbial Communities

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2013-01-10

Total Pages: 633

ISBN-13: 0309264324

DOWNLOAD EBOOK

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.


Bioinformatics and Biomedical Engineering

Bioinformatics and Biomedical Engineering

Author: Ignacio Rojas

Publisher: Springer

Published: 2019-04-30

Total Pages: 605

ISBN-13: 3030179354

DOWNLOAD EBOOK

The two-volume set LNBI 11465 and LNBI 11466 constitutes the proceedings of the 7th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2019, held in Granada, Spain, in May 2019. The total of 97 papers presented in the proceedings, was carefully reviewed and selected from 301 submissions. The papers are organized in topical sections as follows: Part I: High-throughput genomics: bioinformatics tools and medical applications; omics data acquisition, processing, and analysis; bioinformatics approaches for analyzing cancer sequencing data; next generation sequencing and sequence analysis; structural bioinformatics and function; telemedicine for smart homes and remote monitoring; clustering and analysis of biological sequences with optimization algorithms; and computational approaches for drug repurposing and personalized medicine. Part II: Bioinformatics for healthcare and diseases; computational genomics/proteomics; computational systems for modelling biological processes; biomedical engineering; biomedical image analysis; and biomedicine and e-health.


Multivariate Analysis of Ecological Data using CANOCO 5

Multivariate Analysis of Ecological Data using CANOCO 5

Author: Petr Šmilauer

Publisher: Cambridge University Press

Published: 2014-04-17

Total Pages: 375

ISBN-13: 110769440X

DOWNLOAD EBOOK

An accessible introduction to the theory and practice of multivariate analysis for graduates, researchers and professionals dealing with ecological problems.


Approaches in Bioremediation

Approaches in Bioremediation

Author: Ram Prasad

Publisher: Springer

Published: 2018-12-08

Total Pages: 413

ISBN-13: 3030023699

DOWNLOAD EBOOK

Bioremediation refers to the clean‐up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.


Standard Soil Methods for Long-term Ecological Research

Standard Soil Methods for Long-term Ecological Research

Author: G. P. Robertson

Publisher: Oxford University Press, USA

Published: 1999

Total Pages: 481

ISBN-13: 0195120833

DOWNLOAD EBOOK

The goal of the volume is to facilitate cross-site synthesis and evaluation of ecosystem processes. The book is the first broadly based compendium of standardized soil measurement methods and will be an invaluable resource for ecologists, agronomists, and soil scientists."--BOOK JACKET.


Game Changer-Next Generation Sequencing and Its Impact on Food Microbiology

Game Changer-Next Generation Sequencing and Its Impact on Food Microbiology

Author: Jennifer Ronholm

Publisher: Frontiers Media SA

Published: 2018-04-26

Total Pages: 302

ISBN-13: 2889454630

DOWNLOAD EBOOK

Advances in next-generation sequencing technologies (NGS) are revolutionizing the field of food microbiology. Microbial whole genome sequencing (WGS) can provide identification, characterization, and subtyping of pathogens for epidemiological investigations at a level of precision previously not possible. This allows for connections and source attribution to be inferred between related isolates that may be overlooked by traditional techniques. The archiving and global sharing of genome sequences allow for retrospective analysis of virulence genes, antimicrobial resistance markers, mobile genetic elements and other novel genes. The advent of high-throughput 16S rRNA amplicon sequencing, in combination with the advantages offered by massively parallel second-generation sequencing for metagenomics, enable intensive studies on the microbiomes of food products and the impact of foods on the human microbiome. These studies may one day lead to the development of reliable culture-independent methods for food monitoring and surveillance. Similarly, RNA-seq has provided insights into the transcriptomes and hence the behaviour of bacterial pathogens in food, food processing environments, and in interaction with the host at a resolution previously not achieved through the use of microarrays and/or RT-PCR. The vast un-tapped potential applications of NGS along with its rapidly declining costs, give this technology the ability to contribute significantly to consumer protection, global trade facilitation, and increased food safety and security. Despite the rapid advances, challenges remain. How will NGS data be incorporated into our existing global food safety infrastructure? How will massive NGS data be stored and shared globally? What bioinformatics solutions will be used to analyse and optimise these large data sets? This Research Topic discusses recent advances in the field of food microbiology made possible through the use of NGS.


Deep-water Coral Reefs

Deep-water Coral Reefs

Author: Martin Hovland

Publisher: Springer Science & Business Media

Published: 2008-08-24

Total Pages: 295

ISBN-13: 1402084609

DOWNLOAD EBOOK

Deep-water coral reefs are found along large sections of the outer continental shelves and slopes of Europe, from North Cape to the Gulf of Cadiz, and because they also occur along the Atlantic seaboard of USA, the Gulf of Mexico, off Brazil, in the Mediterranean, and off New Zealand, they are currently being targeted by international groups of marine scientists. They have become popular and opportune deep-water research targets because they offer exciting frontier exploration, combined with a whole plethora of modern scientific methods, such as deep-sea drilling, sampling, remote control surveying and documentation. Furthermore they represent timely opportunities for further developments within the application of geochemistry, stable isotope research, bacterial sciences, including DNA-sequestering, and medical research (search for bioactive compounds). The Integrated Ocean Drilling Program (IODP) has arranged a deep-sea scientific drilling campaign on giant carbonate banks off Ireland. Because the reefs currently defy traditional marine-ecological theories, they represent future research opportunities and will enjoy scientific scrutiny for many years to come.