Moufang Loops and Groups with Triality are Essentially the Same Thing

Moufang Loops and Groups with Triality are Essentially the Same Thing

Author: J. I. Hall

Publisher: American Mathematical Soc.

Published: 2019-09-05

Total Pages: 206

ISBN-13: 1470436221

DOWNLOAD EBOOK

In 1925 Élie Cartan introduced the principal of triality specifically for the Lie groups of type D4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title in 1978 was made by Stephen Doro, who was in turn motivated by the work of George Glauberman from 1968. Here the author makes the statement precise in a categorical context. In fact the most obvious categories of Moufang loops and groups with triality are not equivalent, hence the need for the word “essentially.”


Degree Theory of Immersed Hypersurfaces

Degree Theory of Immersed Hypersurfaces

Author: Harold Rosenberg

Publisher: American Mathematical Soc.

Published: 2020-09-28

Total Pages: 62

ISBN-13: 1470441853

DOWNLOAD EBOOK

The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function.


Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees

Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees

Author: Rodney G. Downey

Publisher: American Mathematical Soc.

Published: 2020-09-28

Total Pages: 90

ISBN-13: 1470441624

DOWNLOAD EBOOK

First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with computable enumerable Turing degree can have minimal weak truth table degree. Third, no $Delta^0_2$ set which Turing bounds a promptly simple set can have minimal weak truth table degree.


Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi

Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi

Author: David Carchedi

Publisher: American Mathematical Soc.

Published: 2020

Total Pages: 132

ISBN-13: 1470441446

DOWNLOAD EBOOK

The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings. This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, which extends to derived and spectral Deligne-Mumford stacks as well.


Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Author: Carles Broto

Publisher: American Mathematical Soc.

Published: 2020-02-13

Total Pages: 176

ISBN-13: 1470437724

DOWNLOAD EBOOK

For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).


Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules

Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules

Author: Laurent Berger

Publisher: American Mathematical Soc.

Published: 2020-04-03

Total Pages: 92

ISBN-13: 1470440733

DOWNLOAD EBOOK

The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.


A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side

A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side

Author: Chen Wan

Publisher: American Mathematical Soc.

Published: 2019-12-02

Total Pages: 102

ISBN-13: 1470436868

DOWNLOAD EBOOK

Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.


Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Author: Peter Poláčik

Publisher: American Mathematical Soc.

Published: 2020-05-13

Total Pages: 100

ISBN-13: 1470441128

DOWNLOAD EBOOK

The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.