MOSFET Modeling & BSIM3 User’s Guide

MOSFET Modeling & BSIM3 User’s Guide

Author: Yuhua Cheng

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 467

ISBN-13: 0306470500

DOWNLOAD EBOOK

Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.


CMOS RF Modeling, Characterization and Applications

CMOS RF Modeling, Characterization and Applications

Author: M. Jamal Deen

Publisher: World Scientific

Published: 2002

Total Pages: 426

ISBN-13: 9789810249052

DOWNLOAD EBOOK

CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.


Circuit Simulation with SPICE OPUS

Circuit Simulation with SPICE OPUS

Author: Tadej Tuma

Publisher: Springer Science & Business Media

Published: 2009-06-23

Total Pages: 408

ISBN-13: 0817648674

DOWNLOAD EBOOK

This book is a unique combination of a basic guide to general analog circuit simulation and a SPICE OPUS software manual, which may be used as a textbook or self-study reference. The book is divided into three parts: mathematical theory of circuit analysis, a crash course on SPICE OPUS, and a complete SPICE OPUS reference guide. All simulations as well as the free simulator software may be directly downloaded from the SPICE OPUS homepage: www.spiceopus.si. Circuit Simulation with SPICE OPUS is intended for a wide audience of undergraduate and graduate students, researchers, and practitioners in electrical and systems engineering, circuit design, and simulation development.


Compact Models for Integrated Circuit Design

Compact Models for Integrated Circuit Design

Author: Samar K. Saha

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 548

ISBN-13: 148224067X

DOWNLOAD EBOOK

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.


BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage

BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage

Author: Chenming Hu

Publisher: Elsevier

Published: 2023-04-26

Total Pages: 272

ISBN-13: 0323856780

DOWNLOAD EBOOK

BSIM-Bulk MOSFET Model for IC Design - Digital, Analog, RF and High-Voltage provides in-depth knowledge of the internal operation of the model. The authors not only discuss the fundamental core of the model, but also provide details of the recent developments and new real-device effect models. In addition, the book covers the parameter extraction procedures, addressing geometrical scaling, temperatures, and more. There is also a dedicated chapter on extensive quality testing procedures and experimental results. This book discusses every aspect of the model in detail, and hence will be of significant use for the industry and academia. Those working in the semiconductor industry often run into a variety of problems like model non-convergence or non-physical simulation results. This is largely due to a limited understanding of the internal operations of the model as literature and technical manuals are insufficient. This also creates huge difficulty in developing their own IP models. Similarly, circuit designers and researcher across the globe need to know new features available to them so that the circuits can be more efficiently designed. - Reviews the latest advances in fabrication methods for metal chalcogenide-based biosensors - Discusses the parameters of biosensor devices to aid in materials selection - Provides readers with a look at the chemical and physical properties of reactive metals, noble metals, transition metals chalcogenides and their connection to biosensor device performance


BSIM4 and MOSFET Modeling for IC Simulation

BSIM4 and MOSFET Modeling for IC Simulation

Author: Weidong Liu

Publisher: World Scientific

Published: 2011

Total Pages: 435

ISBN-13: 9812568638

DOWNLOAD EBOOK

This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.


FinFET/GAA Modeling for IC Simulation and Design

FinFET/GAA Modeling for IC Simulation and Design

Author: Yogesh Singh Chauhan

Publisher: Elsevier

Published: 2024-08-23

Total Pages: 326

ISBN-13: 0323958230

DOWNLOAD EBOOK

FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more. - Authored by the lead inventor and developer of FinFET and developers of the BSIM-CMG standard model, providing an expert's insight into the specifications of the standard - A new edition of the original groundbreaking book on the industry-standard FinFET model—BSIM-CMGNew to This Edition - Includes a new chapter providing a comprehensive introduction to GAAFET, including motivations, device concepts, structure, benefits, and the industry standard GAAFET model - Covers the most recent developments in the BSIM-CMG model - Presents an updated RF modeling of FinFET using the BSIM-CMG model including parameter extraction - Includes a new chapter on cryogenic modeling


Device Modeling for Analog and RF CMOS Circuit Design

Device Modeling for Analog and RF CMOS Circuit Design

Author: Trond Ytterdal

Publisher: John Wiley & Sons

Published: 2003-08-01

Total Pages: 306

ISBN-13: 0470864346

DOWNLOAD EBOOK

Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.


Device Circuit Co-Design Issues in FETs

Device Circuit Co-Design Issues in FETs

Author: Shubham Tayal

Publisher: CRC Press

Published: 2023-08-22

Total Pages: 280

ISBN-13: 1000926427

DOWNLOAD EBOOK

This book provides an overview of emerging semiconductor devices and their applications in electronic circuits, which form the foundation of electronic devices. Device Circuit Co-Design Issues in FETs provides readers with a better understanding of the ever-growing field of low-power electronic devices and their applications in the wireless, biosensing, and circuit domains. The book brings researchers and engineers from various disciplines of the VLSI domain together to tackle the emerging challenges in the field of engineering and applications of advanced low-power devices in an effort to improve the performance of these technologies. The chapters examine the challenges and scope of FinFET device circuits, 3D FETs, and advanced FET for circuit applications. The book also discusses low-power memory design, neuromorphic computing, and issues related to thermal reliability. The authors provide a good understanding of device physics and circuits, and discuss transistors based on the new channel/dielectric materials and device architectures to achieve low-power dissipation and ultra-high switching speeds to fulfill the requirements of the semiconductor industry. This book is intended for students, researchers, and professionals in the field of semiconductor devices and nanodevices, as well as those working on device-circuit co-design issues.


Compact MOSFET Models for VLSI Design

Compact MOSFET Models for VLSI Design

Author: A. B. Bhattacharyya

Publisher: John Wiley & Sons

Published: 2009-07-23

Total Pages: 512

ISBN-13: 0470823437

DOWNLOAD EBOOK

Practicing designers, students, and educators in the semiconductor field face an ever expanding portfolio of MOSFET models. In Compact MOSFET Models for VLSI Design , A.B. Bhattacharyya presents a unified perspective on the topic, allowing the practitioner to view and interpret device phenomena concurrently using different modeling strategies. Readers will learn to link device physics with model parameters, helping to close the gap between device understanding and its use for optimal circuit performance. Bhattacharyya also lays bare the core physical concepts that will drive the future of VLSI development, allowing readers to stay ahead of the curve, despite the relentless evolution of new models. Adopts a unified approach to guide students through the confusing array of MOSFET models Links MOS physics to device models to prepare practitioners for real-world design activities Helps fabless designers bridge the gap with off-site foundries Features rich coverage of: quantum mechanical related phenomena Si-Ge strained-Silicon substrate non-classical structures such as Double Gate MOSFETs Presents topics that will prepare readers for long-term developments in the field Includes solutions in every chapter Can be tailored for use among students and professionals of many levels Comes with MATLAB code downloads for independent practice and advanced study This book is essential for students specializing in VLSI Design and indispensible for design professionals in the microelectronics and VLSI industries. Written to serve a number of experience levels, it can be used either as a course textbook or practitioner’s reference. Access the MATLAB code, solution manual, and lecture materials at the companion website: www.wiley.com/go/bhattacharyya