"Moonshine" of Finite Groups

Author: Koichiro Harada

Publisher: European Mathematical Society

Published: 2010

Total Pages: 88

ISBN-13: 9783037190906

DOWNLOAD EBOOK

This is an almost verbatim reproduction of the author's lecture notes written in 1983-84 at Ohio State University, Columbus. A substantial update is given in the bibliography. Over the last 20 plus years there has been energetic activity in the field of finite simple group theory related to the monster simple group. Most notably, influential works have been produced in the theory of vertex operator algebras from research that was stimulated by the moonshine of the finite groups. Still, we can ask the same questions now that we did 30-40 years ago: What is the monster simple group? Is it really related to the theory of the universe as it was vaguely so envisioned? What lies behind the moonshine phenomena of the monster group? It may appear that we have only scratched the surface. These notes are primarily reproduced for the benefit of readers who wish to start learning about modular functions used in moonshine.


Vertex Operators in Mathematics and Physics

Vertex Operators in Mathematics and Physics

Author: J. Lepowsky

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 484

ISBN-13: 146139550X

DOWNLOAD EBOOK

James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.


Finite Groups 2003

Finite Groups 2003

Author: Chat Yin Ho

Publisher: Walter de Gruyter

Published: 2008-08-22

Total Pages: 434

ISBN-13: 3110198126

DOWNLOAD EBOOK

This is a volume of research articles related to finite groups. Topics covered include the classification of finite simple groups, the theory of p-groups, cohomology of groups, representation theory and the theory of buildings and geometries. As well as more than twenty original papers on the latest developments, which will be of great interest to specialists, the volume contains several expository articles, from which students and non-experts can learn about the present state of knowledge and promising directions for further research. The Finite Groups 2003 conference was held in honor of John Thompson. The profound influence of his fundamental contributions is clearly visible in this collection of papers dedicated to him.


Moonshine, the Monster, and Related Topics

Moonshine, the Monster, and Related Topics

Author: Chongying Dong

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 382

ISBN-13: 0821803859

DOWNLOAD EBOOK

This is the proceedings of a Joint Summer Research Conference held at Mount Holyoke College in Jun 1994. As perhaps the first conference proceedings devoted exclusively to the subject known as "Moonshine", this work contains something for many mathematicians and physicists. Many of the results featured are not available elsewhere.


Vertex Operator Algebras and the Monster

Vertex Operator Algebras and the Monster

Author: Igor Frenkel

Publisher: Academic Press

Published: 1989-05-01

Total Pages: 563

ISBN-13: 0080874541

DOWNLOAD EBOOK

This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."


Finite Simple Groups: Thirty Years of the Atlas and Beyond

Finite Simple Groups: Thirty Years of the Atlas and Beyond

Author: Manjul Bhargava

Publisher: American Mathematical Soc.

Published: 2017-07-24

Total Pages: 242

ISBN-13: 1470436787

DOWNLOAD EBOOK

Classification of Finite Simple Groups, one of the most monumental accomplishments of modern mathematics, was announced in 1983 with the proof completed in 2004. Since then, it has opened up a new and powerful strategy to approach and resolve many previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy crucially utilizes various information about finite simple groups, part of which is catalogued in the Atlas of Finite Groups (John H. Conway et al.), and in An Atlas of Brauer Characters (Christoph Jansen et al.). It is impossible to overestimate the roles of the Atlases and the related computer algebra systems in the everyday life of researchers in many areas of contemporary mathematics. The main objective of the conference was to discuss numerous applications of the Atlases and to explore recent developments and future directions of research, with focus on the interaction between computation and theory and applications to number theory and algebraic geometry. The papers in this volume are based on talks given at the conference. They present a comprehensive survey on current research in all of these fields.


The Arcata Conference on Representations of Finite Groups, Part 1

The Arcata Conference on Representations of Finite Groups, Part 1

Author: Paul Fong

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 501

ISBN-13: 082181477X

DOWNLOAD EBOOK

The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.


Quilts: Central Extensions, Braid Actions, and Finite Groups

Quilts: Central Extensions, Braid Actions, and Finite Groups

Author: Tim Hsu

Publisher: Springer

Published: 2007-05-06

Total Pages: 189

ISBN-13: 3540455809

DOWNLOAD EBOOK

Quilts are 2-complexes used to analyze actions and subgroups of the 3-string braid group and similar groups. This monograph establishes the fundamentals of quilts and discusses connections with central extensions, braid actions, and finite groups. Most results have not previously appeared in a widely available form, and many results appear in print for the first time. This monograph is accessible to graduate students, as a substantial amount of background material is included. The methods and results may be relevant to researchers interested in infinite groups, moonshine, central extensions, triangle groups, dessins d'enfants, and monodromy actions of braid groups.