Charge Dynamics in Organic Semiconductors

Charge Dynamics in Organic Semiconductors

Author: Pascal Kordt

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-09-12

Total Pages: 344

ISBN-13: 3110473879

DOWNLOAD EBOOK

In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link


Multiscale Modelling of Organic and Hybrid Photovoltaics

Multiscale Modelling of Organic and Hybrid Photovoltaics

Author: David Beljonne

Publisher: Springer

Published: 2014-08-12

Total Pages: 407

ISBN-13: 3662438747

DOWNLOAD EBOOK

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.


An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

Author: A.P.J. Jansen

Publisher: Springer

Published: 2012-05-31

Total Pages: 266

ISBN-13: 364229488X

DOWNLOAD EBOOK

Kinetic Monte Carlo (kMC) simulations still represent a quite new area of research, with a rapidly growing number of publications. Broadly speaking, kMC can be applied to any system describable as a set of minima of a potential-energy surface, the evolution of which will then be regarded as hops from one minimum to a neighboring one. The hops in kMC are modeled as stochastic processes and the algorithms use random numbers to determine at which times the hops occur and to which neighboring minimum they go. Sometimes this approach is also called dynamic MC or Stochastic Simulation Algorithm, in particular when it is applied to solving macroscopic rate equations. This book has two objectives. First, it is a primer on the kMC method (predominantly using the lattice-gas model) and thus much of the book will also be useful for applications other than to surface reactions. Second, it is intended to teach the reader what can be learned from kMC simulations of surface reaction kinetics. With these goals in mind, the present text is conceived as a self-contained introduction for students and non-specialist researchers alike who are interested in entering the field and learning about the topic from scratch.


Physics of Organic Semiconductors

Physics of Organic Semiconductors

Author: Wolfgang Brütting

Publisher: John Wiley & Sons

Published: 2012-10-02

Total Pages: 660

ISBN-13: 3527654968

DOWNLOAD EBOOK

The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.


Topics In High Field Transport In Semiconductors

Topics In High Field Transport In Semiconductors

Author: Kevin F Brennan

Publisher: World Scientific

Published: 2001-07-31

Total Pages: 270

ISBN-13: 9814490733

DOWNLOAD EBOOK

This book examines some of the charge carrier transport issues encountered in the field of modern semiconductor devices and novel materials. Theoretical approaches to the understanding and modeling of the relevant physical phenomena, seen in devices that have very small spatial dimensions and that operate under high electric field strength, are described in papers written by leading experts and pioneers in this field. In addition, the book examines the transport physics encountered in novel materials such as wide band gap semiconductors (GaN, SiC, etc.) as well as organic semiconductors. Topics in High Field Transport in Semiconductors provides a comprehensive overview that will be beneficial to newcomers as well as engineers and researchers engaged in this exciting field.


Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation

Author: Joachim Piprek

Publisher: CRC Press

Published: 2017-10-10

Total Pages: 835

ISBN-13: 149874947X

DOWNLOAD EBOOK

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.


Nanocrystal Quantum Dots

Nanocrystal Quantum Dots

Author: Victor I. Klimov

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 485

ISBN-13: 1420079271

DOWNLOAD EBOOK

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.


Doping and Density of States Engineering for Organic Thermoelectrics

Doping and Density of States Engineering for Organic Thermoelectrics

Author: Guangzheng Zuo

Publisher: Linköping University Electronic Press

Published: 2018-05-14

Total Pages: 77

ISBN-13: 917685311X

DOWNLOAD EBOOK

Thermoelectric materials can turn temperature differences directly into electricity. To use this to harvest e.g. waste heat with an efficiency that approaches the Carnot efficiency requires a figure of merit ZT larger than 1. Compared with their inorganic counterparts, organic thermoelectrics (OTE) have numerous advantages, such as low cost, large-area compatibility, flexibility, material abundance and an inherently low thermal conductivity. Therefore, organic thermoelectrics are considered by many to be a promising candidate material system to be used in lower cost and higher efficiency thermoelectric energy conversion, despite record ZT values for OTE currently lying around 0.25. A complete organic thermoelectric generator (TEG) normally needs both p-type and n-type materials to form its electric circuit. Molecular doping is an effective way to achieve p- and ntype materials using different dopants, and it is necessary to fundamentally understand the doping mechanism. We developed a simple yet quantitative analytical model and compare it with numerical kinetic Monte Carlo simulations to reveal the nature of the doping effect. The results show the formation of a deep tail in the Gaussian density of states (DOS) resulting from the Coulomb potentials of ionized dopants. It is this deep trap tail that negatively influences the charge carrier mobility with increasing doping concentration. The trends in mobilities and conductivities observed from experiments are in good agreement with the modeling results, for a large range of materials and doping concentrations. Having a high power factor PF is necessary for efficient TEG. We demonstrate that the doping method can heavily impact the thermoelectric properties of OTE. In comparison to conventional bulk doping, sequential doping can achieve higher conductivity by preserving the morphology, such that the power factor can improve over 100 times. To achieve TEG with high output power, not only a high PF is needed, but also having a significant active layer thickness is very important. We demonstrate a simple way to fabricate multi-layer devices by sequential doping without significantly sacrificing PF. In addition to the application discussed above, harvesting large amounts of heat at maximum efficiency, organic thermoelectrics may also find use in low-power applications like autonomous sensors where voltage is more important than power. A large output voltage requires a high Seebeck coefficient. We demonstrate that density of states (DOS) engineering is an effective tool to increase the Seebeck coefficient by tailoring the positions of the Fermi energy and the transport energy in n- and p-type doped blends of conjugated polymers and small molecules. In general, morphology heavily impacts the performance of organic electronic devices based on mixtures of two (or more) materials, and organic thermoelectrics are no exception. We experimentally find that the charge and energy transport is distinctly different in well-mixed and phase separated morphologies, which we interpreted in terms of a variable range hopping model. The experimentally observed trends in conductivity and Seebeck coefficient are reproduced by kinetic Monte Carlo simulations in which the morphology is accounted for.


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-03-17

Total Pages: 424

ISBN-13: 3527685146

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.