Multiscale Modeling in Epitaxial Growth

Multiscale Modeling in Epitaxial Growth

Author: Axel Voigt

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 240

ISBN-13: 3764373431

DOWNLOAD EBOOK

Epitaxy is relevant for thin film growth and is a very active area of theoretical research since several years. Recently powerful numerical techniques have been used to link atomistic effects at the film's surface to its macroscopic morphology. This book also serves as an introduction into this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists.


Atomistic Aspects of Epitaxial Growth

Atomistic Aspects of Epitaxial Growth

Author: Miroslav Kotrla

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 588

ISBN-13: 9401003912

DOWNLOAD EBOOK

Epitaxial growth lies at the heart of a wide range of industrial and technological applications. Recent breakthroughs, experimental and theoretical, allow actual atom-by-atom manipulation and an understanding of such processes, opening up a totally new area of unprecedented nanostructuring. The contributions to Atomistic Aspects of Epitaxial Growth are divided into five main sections, taking the reader from the atomistic details of surface diffusion to the macroscopic description of epitaxial systems. many of the papers contain substantial background material on theoretical and experimental methods, making the book suitable for both graduate students as a supplementary text in a course on epitaxial phenomena, and for professionals in the field.


Morphological Organization In Epitaxial Growth And Removal

Morphological Organization In Epitaxial Growth And Removal

Author: Max G Lagally

Publisher: World Scientific

Published: 1999-01-29

Total Pages: 508

ISBN-13: 9814496162

DOWNLOAD EBOOK

This book provides a critical assessment of the current status and the likely future directions of thin-film growth, an area of exceptional technological importance. Its emphasis is on descriptions of the atomic-scale mechanisms controlling the dynamics and thermodynamics of the morphological evolution of the growth front of thin films in diverse systems of fundamental and technological significance. The book covers most of the original and important conceptual developments made in the 1990s. The articles, written by leading experts, are arranged in five major categories — the theoretical basis, semiconductor-on-semiconductor growth, metal-on-metal growth, metal-on-semiconductor growth, and removal as the inverse process of growth. This book, the only one of its kind in this decade, will prove to be an indispensable reference source for active researchers, those having peripheral interest, and graduate students starting out in the field.


Epitaxy

Epitaxy

Author: Miao Zhong

Publisher: BoD – Books on Demand

Published: 2018-03-07

Total Pages: 246

ISBN-13: 9535138898

DOWNLOAD EBOOK

The edited volume "Epitaxy" is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of materials science. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but are united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors in the field of materials science as well as opening new possible research paths for further developments.


Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics

Author: Kurt Binder

Publisher: Springer

Published: 2019-04-30

Total Pages: 272

ISBN-13: 3030107582

DOWNLOAD EBOOK

The sixth edition of this highly successful textbook provides a detailed introduction to Monte Carlo simulation in statistical physics, which deals with the computer simulation of many-body systems in condensed matter physics and related fields of physics and beyond (traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, these powerful simulation methods calculate probability distributions, making it possible to estimate the thermodynamic properties of various systems. The book describes the theoretical background of these methods, enabling newcomers to perform such simulations and to analyse their results. It features a modular structure, with two chapters providing a basic pedagogic introduction plus exercises suitable for university courses; the remaining chapters cover major recent developments in the field. This edition has been updated with two new chapters dealing with recently developed powerful special algorithms and with finite size scaling tools for the study of interfacial phenomena, which are important for nanoscience. Previous editions have been highly praised and widely used by both students and advanced researchers.


Epitaxial Growth of III-Nitride Compounds

Epitaxial Growth of III-Nitride Compounds

Author: Takashi Matsuoka

Publisher: Springer

Published: 2018-04-17

Total Pages: 228

ISBN-13: 3319766414

DOWNLOAD EBOOK

This book presents extensive information on the mechanisms of epitaxial growth in III-nitride compounds, drawing on a state-of-the-art computational approach that combines ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations to do so. It discusses important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. In addition, it discusses advanced fundamental structural and electronic properties, surface structures, fundamental growth processes and novel behavior of thin films in III-nitride semiconductors. As such, it will appeal to all researchers, engineers and graduate students seeking detailed information on crystal growth and its application to III-nitride compounds.


Handbook of Crystal Growth

Handbook of Crystal Growth

Author: Tatau Nishinaga

Publisher: Elsevier

Published: 2014-11-04

Total Pages: 1216

ISBN-13: 0444593764

DOWNLOAD EBOOK

Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA - Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys - Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms - Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB - Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth - Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization - Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules - Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space


Thin Film Growth

Thin Film Growth

Author: Zexian Cao

Publisher: Elsevier

Published: 2011-07-18

Total Pages: 433

ISBN-13: 0857093290

DOWNLOAD EBOOK

Thin film technology is used in many applications such as microelectronics, optics, hard and corrosion resistant coatings and micromechanics, and thin films form a uniquely versatile material base for the development of novel technologies within these industries. Thin film growth provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films.Part one focuses on the theory of thin film growth, with chapters covering nucleation and growth processes in thin films, phase-field modelling of thin film growth and surface roughness evolution. Part two covers some of the techniques used for thin film growth, including oblique angle deposition, reactive magnetron sputtering and epitaxial growth of graphene films on single crystal metal surfaces. This section also includes chapters on the properties of thin films, covering topics such as substrate plasticity and buckling of thin films, polarity control, nanostructure growth dynamics and network behaviour in thin films.With its distinguished editor and international team of contributors, Thin film growth is an essential reference for engineers in electronics, energy materials and mechanical engineering, as well as those with an academic research interest in the topic. - Provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films - Focusses on the theory and modelling of thin film growth, techniques and mechanisms used for thin film growth and properties of thin films - An essential reference for engineers in electronics, energy materials and mechanical engineering