Markov Chain Monte Carlo Methods in Quantum Field Theories

Markov Chain Monte Carlo Methods in Quantum Field Theories

Author: Anosh Joseph

Publisher: Springer Nature

Published: 2020-04-16

Total Pages: 134

ISBN-13: 3030460444

DOWNLOAD EBOOK

This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.


Monte Carlo Methods in Quantum Problems

Monte Carlo Methods in Quantum Problems

Author: M.H. Kalos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 292

ISBN-13: 940096384X

DOWNLOAD EBOOK

Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.


Quantum Monte Carlo Methods

Quantum Monte Carlo Methods

Author: James Gubernatis

Publisher: Cambridge University Press

Published: 2016-06-02

Total Pages: 503

ISBN-13: 1316483126

DOWNLOAD EBOOK

Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.


Quantum Monte Carlo Methods in Physics and Chemistry

Quantum Monte Carlo Methods in Physics and Chemistry

Author: M.P. Nightingale

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 488

ISBN-13: 9780792355519

DOWNLOAD EBOOK

In recent years there has been a considerable growth in interest in Monte Carlo methods, and quantum Monte Carlo methods in particlular. Clearly, the ever-increasing computational power available to researchers, has stimulated the development of improved algorithms, and almost all fields in computational physics and chemistry are affected by their applications. Here we just mention some fields that are covered in the lecture notes contained in this volume, viz. electronic structure studies of atoms, molecules and solids, nuclear structure, and low- or zero-temperature studies of strongly-correlated quantum systems, both of the continuum and lattice variety, and cooperative phenomena in classical systems. Although each area of application may have its own peculiarities, requiring specialized solutions, all share the same basic methodology. It was with the intention of bringing together researchers and students from these various areas that the NATO Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry was held at Cornell University from 12 to 24 July, 1998. This book contains material presented at the Institute in a series of mini courses in quantum Monte Carlo methods. The program consisted of lectures predominantly of a pedagogical nature, and of more specialized seminars. The levels varied from introductory to advanced, and from basic methods to applications; the program was intended for an audience working towards the Ph.D. level and above. Despite the essentially pedagogic nature of the Institute, several of the lectures and seminars contained in this volume present recent developments not previously published.


Quantum Monte Carlo Methods in Condensed Matter Physics

Quantum Monte Carlo Methods in Condensed Matter Physics

Author: Masuo Suzuki

Publisher: World Scientific

Published: 1993

Total Pages: 380

ISBN-13: 9789810236830

DOWNLOAD EBOOK

This book reviews recent developments of quantum Monte Carlo methods and some remarkable applications to interacting quantum spin systems and strongly correlated electron systems. It contains twenty-two papers by thirty authors. Some of the features are as follows. The first paper gives the foundations of the standard quantum Monte Carlo method, including some recent results on higher-order decompositions of exponential operators and ordered exponentials. The second paper presents a general review of quantum Monte Carlo methods used in the present book. One of the most challenging problems in the field of quantum Monte Carlo techniques, the negative-sign problem, is also discussed and new methods proposed to partially overcome it. In addition, low-dimensional quantum spin systems are studied. Some interesting applications of quantum Monte Carlo methods to fermion systems are also presented to investigate the role of strong correlations and fluctuations of electrons and to clarify the mechanism of high-c superconductivity. Not only thermal properties but also quantum-mechanical ground-state properties have been studied by the projection technique using auxiliary fields. Further, the Haldane gap is confirmed by numerical calculations. Active researchers in the forefront of condensed matter physics as well as young graduate students who want to start learning the quantum Monte Carlo methods will find this book useful.


Quantum Monte Carlo Approaches for Correlated Systems

Quantum Monte Carlo Approaches for Correlated Systems

Author: Federico Becca

Publisher: Cambridge University Press

Published: 2017-11-30

Total Pages: 287

ISBN-13: 1108547311

DOWNLOAD EBOOK

Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference for students and researchers working in condensed matter theory or those interested in advanced numerical methods for electronic simulation.


Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics

Author: Kurt Binder

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 201

ISBN-13: 366230273X

DOWNLOAD EBOOK

When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.


Mean Field Simulation for Monte Carlo Integration

Mean Field Simulation for Monte Carlo Integration

Author: Pierre Del Moral

Publisher: CRC Press

Published: 2013-05-20

Total Pages: 628

ISBN-13: 1466504056

DOWNLOAD EBOOK

In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters. Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods. Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology. This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.


A Guide to Monte Carlo Simulations in Statistical Physics

A Guide to Monte Carlo Simulations in Statistical Physics

Author: David P. Landau

Publisher: Cambridge University Press

Published: 2005-09

Total Pages: 456

ISBN-13: 9780521842389

DOWNLOAD EBOOK

This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.


The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics

Author: Kurt Binder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 406

ISBN-13: 3662028557

DOWNLOAD EBOOK

The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.