This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.
This book is devoted to analysis of Monte Carlo methods developed in rarefied gas dynamics. Presented is the short history of the development of such methods, described are their main properties, their advantages and deficiencies. It is shown that the contemporary stage in the progress of computational methods cannot be regarded without a complex approach to the preparation of algorithms taking into account all the peculiarities of the problem under consideration, that is, of the physical nature of a process, the mathematical model and the theoretical aspects of computational mathematics and stochastic processes. Thoroughly investigated is the possibility of application of Monte Carlo methods in some kindred areas of science which are non-traditional for the use of statistical modeling (continuous media, turbulence). Considered are the possible directions of development of statistical modeling.
7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.
This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.
Direct Simulation Monte Carlo is a well-established method for the computer simulation of a gas flow at the molecular level. While there is a limit to the size of the flow-field with respect to the molecular mean free path, personal computers now allow solutions well into the continuum flow regime. The method can be applied to basic problems in gas dynamics and practical applications range from microelectromechanics systems (MEMS) to astrophysical flows. DSMC calculations have assisted in the design of vacuum systems, including those for semiconductor manufacture, and of many space vehicles and missions. The method was introduced by the author fifty years ago and it has been the subject of two monographs that have been published by Oxford University Press. It is now twenty years since the second of these was written and, since that time, most DSMC procedures have been superseded or significantly modified. In addition, visual interactive DSMC application programs have been developed that have proved to be readily applicable by non-specialists to a wide variety of practical problems. The computational variables are set automatically within the code and the programs report whether or not the criteria for a good calculation have been met. This book is concerned with the theory behind the current DSMC molecular models and procedures, with their integration into general purpose programs, and with the validation and demonstration of these programs. The DSMC and associated programs, including all source codes, can be freely downloaded through links that are provided in the book. The main accompanying program is simply called the "DSMC program" and, in future versions of the book, it will be applicable to homogeneous (or zero-dimensional) flows through to three-dimensional flow. All DSMC simulations are time-accurate unsteady calculations, but the flow may become steady at large times. The current version of the DSMC code is applicable only to zero and one-dimensional flows and the older DS2V code is employed for the two-dimensional validation and demonstration cases. It is because of this temporary use of the older and well-proven program that the DS2V source code is made freely available for the first time. Most of the homogeneous flow cases are validation studies, but include internal mode relaxation studies and spontaneous and forced ignition leading to combustion in an oxygen-hydrogen mixture. The one-dimensional cases include the structure of a re-entry shock wave that takes into account electronic excitation as well as dissociation, recombination and exchange reactions. They also include a spherically imploding shock wave and a spherical blast wave. The two-dimensional and axially-symmetric demonstration cases range from a typical MEMS flow to aspects of the flow around rotating planets. Intermediate cases include the formation and structure of a combustion wave, a vacuum pump driven by thermal creep, a typical vacuum processing chamber, and the flow around a typical re-entry vehicle
Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.
This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.