Monte Carlo Methods for Applied Scientists

Monte Carlo Methods for Applied Scientists

Author: Ivan T. Dimov

Publisher: World Scientific

Published: 2008

Total Pages: 308

ISBN-13: 9810223293

DOWNLOAD EBOOK

The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer.This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems.A selection of algorithms developed both for serial and parallel machines are provided.


Monte Carlo Strategies in Scientific Computing

Monte Carlo Strategies in Scientific Computing

Author: Jun S. Liu

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 350

ISBN-13: 0387763716

DOWNLOAD EBOOK

This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.


Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering

Author: Paul Glasserman

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 603

ISBN-13: 0387216170

DOWNLOAD EBOOK

From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis


Monte Carlo Methods

Monte Carlo Methods

Author: Adrian Barbu

Publisher: Springer Nature

Published: 2020-02-24

Total Pages: 433

ISBN-13: 9811329710

DOWNLOAD EBOOK

This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.


Explorations in Monte Carlo Methods

Explorations in Monte Carlo Methods

Author: Ronald W. Shonkwiler

Publisher: Springer Science & Business Media

Published: 2009-08-11

Total Pages: 249

ISBN-13: 0387878378

DOWNLOAD EBOOK

Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.


Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science

Author: Thomas M. Carsey

Publisher: SAGE Publications

Published: 2013-08-05

Total Pages: 304

ISBN-13: 1483324923

DOWNLOAD EBOOK

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.


Monte Carlo Methods for Applied Scientists

Monte Carlo Methods for Applied Scientists

Author: Ivan Dimov

Publisher: World Scientific

Published: 2008

Total Pages: 308

ISBN-13: 9812779892

DOWNLOAD EBOOK

The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer. This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although a suitable text for final year postgraduate mathematicians and computational scientists it is principally aimed at the applied scientists: only a small amount of mathematical knowledge is assumed and theorem proving is kept to a minimum, with the main focus being on parallel algorithms development often to applied industrial problems. A selection of algorithms developed both for serial and parallel machines are provided. Sample Chapter(s). Chapter 1: Introduction (231 KB). Contents: Basic Results of Monte Carlo Integration; Optimal Monte Carlo Method for Multidimensional Integrals of Smooth Functions; Iterative Monte Carlo Methods for Linear Equations; Markov Chain Monte Carlo Methods for Eigenvalue Problems; Monte Carlo Methods for Boundary-Value Problems (BVP); Superconvergent Monte Carlo for Density Function Simulation by B-Splines; Solving Non-Linear Equations; Algorithmic Effciency for Different Computer Models; Applications for Transport Modeling in Semiconductors and Nanowires. Readership: Applied scientists and mathematicians.


Advanced Markov Chain Monte Carlo Methods

Advanced Markov Chain Monte Carlo Methods

Author: Faming Liang

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 308

ISBN-13: 1119956803

DOWNLOAD EBOOK

Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.


Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics

Author: Kurt Binder

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 201

ISBN-13: 366230273X

DOWNLOAD EBOOK

When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.


Stochastic Simulation and Monte Carlo Methods

Stochastic Simulation and Monte Carlo Methods

Author: Carl Graham

Publisher: Springer Science & Business Media

Published: 2013-07-16

Total Pages: 264

ISBN-13: 3642393632

DOWNLOAD EBOOK

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.