This book provides an overview of recent innovations and achievements in the broad areas of cyber-physical systems (CPS), including architecture, networking, systems, applications, security, and privacy. The book discusses various new CPS technologies from diverse aspects to enable higher level of innovation towards intelligent life. The book provides insight to the future integration, coordination and interaction between the physical world, the information world, and human beings. The book features contributions from renowned researchers and engineers, who discuss key issues from various perspectives, presenting opinions and recent CPS-related achievements. Investigates how to advance the development of cyber-physical systems Provides a joint consideration of other newly emerged technologies and concepts in relation to CPS like cloud computing, big data, fog computing, and crowd sourcing Includes topics related to CPS such as architecture, system, networking, application, algorithm, security and privacy
In cyber-physical systems (CPS), sensors and embedded systems are networked together to monitor and manage a range of physical processes through a continuous feedback system. This allows distributed computing using wireless devices. Cyber-Physical Systems-A Computational Perspective examines various developments of CPS that are impacting our daily
Wide area monitoring, protection and control systems (WAMPACs) have been recognized as the most promising enabling technologies to meet challenges of modern electric power transmission systems, where reliability, economics, environmental and other social objectives must be balanced to optimize the grid assets and satisfy growing electrical demand. To this aim WAMPAC requires precise phasor and frequency information, which are acquired by deploying multiple time synchronized sensors, known as Phasor Measurement Units (PMUs), providing precise synchronized information about voltage and current phasors, frequency and rate-of-change-of-frequency.
This handbook incorporates new developments in automation. It also presents a widespread and well-structured conglomeration of new emerging application areas, such as medical systems and health, transportation, security and maintenance, service, construction and retail as well as production or logistics. The handbook is not only an ideal resource for automation experts but also for people new to this expanding field.
Cyber Physical System (CPS) is an integration of computation, networking, and physical processes: the combination of several systems ofdifferent nature whose main purpose is tocontrol a physical process and, through feedback, adapt itself to new conditions, in real time.Cyber Physical System: Concepts and Applications includes an in-depth coverage of the latestmodels and theories that unify perspectives. It expresses the interacting dynamics of the computational and physical components of asystem in a dynamic environment. Covers automatic application of software countermeasures against physical attacks and impact of cyber physical system on industry 4.0 Explains how formal models provide mathematical abstractions to manage the complexity of a system design Offers a rigorous and comprehensive introduction to the principles of design,specification, modelling, and analysis of cyber physicalsystems Discusses the multiple domains where Cyber Physical system has a vital impact and provides knowledge about different models thatprovide mathematical abstractions tomanage the complexity of a system design Provides the rapidly expanding field of cyber-physical systems with a Long-needed foundational text by an established authority This book is primarily aimed at advanced undergraduates, graduates of computer science. Engineers will also find this book useful.
This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.
Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing
Cyber-physical systems (CPSs) have quickly become one of the hottest computer applications today. With their tight integration of cyber and physical objects, it is believed CPSs will transform how we interact with the physical world, just like the Internet transformed how we interact with one another. A CPS could be a system at multiple scales, from large smart bridges with fluctuation detection and responding functions, to autonomous cars and tiny implanted medical devices. Cyber-Physical Systems: Integrated Computing and Engineering Design supplies comprehensive coverage of the principles and design of CPSs. It addresses the many challenges that must be overcome and outlines a roadmap of how to get there. Emphasizes the integration of cyber computing and physical objects control Covers important CPS theory foundations and models Includes interesting case studies of several important civilian and health care applications that illustrate the CPS design process Addresses the collaboration of the sensing and controlling of a physical system with robust software architecture Explains how to account for random failure events that can occur in a real CPS environment Presented in a systematic manner, the book begins by discussing the basic concept underlying CPSs and examining some challenging design issues. It then covers the most important design theories and modeling methods for a practical CPS. Next, it moves on to sensor-based CPSs, which use embedded sensors and actuators to interact with the physical world. The text presents concrete CPS designs for popular civilian applications, including building and energy management. Reflecting the importance of human health care in society, it includes CPS examples of rehabilitation applications such as virtual reality-based disability recovery platforms.