Design and Synthesis of Organic Molecules Based on Molecular Recognition

Design and Synthesis of Organic Molecules Based on Molecular Recognition

Author: Georges van Binst

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 3642709265

DOWNLOAD EBOOK

A topic for a Solvay Conference should be general enough to conform with the great tradition of previous conferences. On the other hand it should not be so broad that it can not be covered during the limited time of the conference. After discussion of several such topics, "Design and Synthesis of Organic Molecules Based on Molecular Recognition" was chosen. According to Albert Einstein we live in an era of perfect methods and confused aims. For example in organic chemistry the known synthetic methods allow us to prepare an astronomical number of compounds; the gap between the possible and the relevant becomes larger every day. After discovery and classification of the main types of reactions, the study of the selectivity of reactions becomes of paramount importance. One can learn quite a lot from Nature, which uses molecular recognition to achieve selec tivity in a degree so far unattainable by mere mortals. To analyze the structural features applied by Nature, to accomplish high molecular recog nition, and to simulate these features by synthesis have recently become therefore favorite occupations of chemists. The purpose of this conference was to bring together two groups, the analysts and the syntheticists, to discuss the present status of the knowledge. This monograph contains the chairman's introduction in which he has summarized the main points at issue and the contributions of the renowned scientists who participated. The organizers hope that it will stimulate further research in this fascinating field.


Surface and Nanomolecular Catalysis

Surface and Nanomolecular Catalysis

Author: Ryan Richards

Publisher: CRC Press

Published: 2006-05-25

Total Pages: 555

ISBN-13: 1420015753

DOWNLOAD EBOOK

Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalys


Pincer Compounds

Pincer Compounds

Author: David Morales-Morales

Publisher: Elsevier

Published: 2018-04-11

Total Pages: 756

ISBN-13: 0128129328

DOWNLOAD EBOOK

Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry


Principles and Advances in Supramolecular Catalysis

Principles and Advances in Supramolecular Catalysis

Author: Jubaraj Bikash Baruah

Publisher: CRC Press

Published: 2019-04-01

Total Pages: 239

ISBN-13: 0429608047

DOWNLOAD EBOOK

Supramolecular catalysis is involved in assimilation or growth of biological products and it has advantages over conventional catalysis in dealing with systems beyond molecules to mimic the biological catalytic processes. Principles and Advances in Supramolecular Catalysis shows how a supramolecular catalytic reaction proceeds and how interactions among molecules provide vessels or specific binding sites to carry out chemical reactions. The utilities of such catalytic reactions in waste, hazard management, medicine, food, etc. are explained in this book. The book focuses on examples to provide a fundamental basis so that, in the future, supramolecular catalytic reactions are utilised in the field of chemical, biological, biophysical sciences and technologies. Features: Discusses fundamental and interdisciplinary aspects of supramolecular catalysis Narrates mechano-chemical and stimuli-guided supramolecular catalytic reactions Divulges the intriguing aspects of self-replications and self-assembling performed through supramolecular catalysis Incorporates supramolecular catalytic reactions of metal-organic frameworks as artificial metalloenzymes


Protein Conformational Dynamics

Protein Conformational Dynamics

Author: Ke-li Han

Publisher: Springer Science & Business Media

Published: 2014-01-20

Total Pages: 488

ISBN-13: 3319029703

DOWNLOAD EBOOK

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.


C-H Activation for Asymmetric Synthesis

C-H Activation for Asymmetric Synthesis

Author: Françoise Colobert

Publisher: John Wiley & Sons

Published: 2019-11-12

Total Pages: 294

ISBN-13: 3527343407

DOWNLOAD EBOOK

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.


Nanozymes: Next Wave of Artificial Enzymes

Nanozymes: Next Wave of Artificial Enzymes

Author: Xiaoyu Wang

Publisher: Springer

Published: 2016-07-27

Total Pages: 134

ISBN-13: 3662530686

DOWNLOAD EBOOK

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.


Anion-Binding Catalysis

Anion-Binding Catalysis

Author: Olga Garcia-Mancheno

Publisher: John Wiley & Sons

Published: 2022-03-21

Total Pages: 418

ISBN-13: 3527348573

DOWNLOAD EBOOK

Explores the potential of new types of anion-binding catalysts to solve challenging synthetic problems Anion-Binding Catalysis introduces readers to the use of anion-binding processes in catalytic chemical activation, exploring how this approach can contribute to the future design of novel synthetic transformations. Featuring contributions by world-renowned scientists in the field, this authoritative volume describes the structure, properties, and catalytic applications of anions as well as synthetic applications and practical analytical methods. In-depth chapters are organized by type of catalyst rather than reaction type, providing readers with an accessible overview of the existing classes of effective catalysts. The authors discuss the use of halogens as counteranions, the combination of (thio)urea and squaramide-based anion-binding with other types of organocatalysis, anion-binding catalysis by pnictogen and tetrel bonding, nucleophilic co-catalysis, anion-binding catalysis by pnictogen and tetrel bonding, and more. Helping readers appreciate and evaluate the potential of anion-binding catalysis, this timely book: Illustrates the historical development, activation mode, and importance of anion-binding in chemical catalysis Explains the analytic methods used to determine the anion-binding affinity of the catalysts Describes catalytic and synthetic applications of common NH- and OH-based hydrogen-donor catalysts as well as C-H triazole/triazolium catalysts Covers amino-catalysis involving enamine, dienamine, or iminium activation approaches Discusses new trends in the field of anion-binding catalysis, such as the combination of anion-binding with other types of catalysis Presenting the current state of the field as well as the synthetic potential of anion-binding catalysis in future, Anion-Binding Catalysis is essential reading for researchers in both academia and industry involved in organic synthesis, homogeneous catalysis, and pharmaceutical chemistry.