There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their co
Electrolytes and salt solutions are ubiquitous in chemical industry, biology and nature. This unique compendium introduces the elements of the solution properties of ionic mixtures. In addition, it also serves as a bridge to the modern researches into the molecular aspects of uniform and non-uniform charged systems. Notable subjects include the Debye-Hückel limit, Pitzer's formulation, Setchenov salting-out, and McMillan-Mayer scale. Two new chapters on industrial applications — natural gas treating, and absorption refrigeration, are added to make the book current and relevant.This textbook is eminently suitable for undergraduate and graduate students. For practicing engineers without a background in salt solutions, this introductory volume can also be used as a self-study.
This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the “signature” of the present book. First, these papers are concerned with “difficult” or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from “normal” conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned “difficult” systems.
The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.
This book deals with density, temperature, velocity and concentration fluctuations in fluids and fluid mixtures. The book first reviews thermal fluctuations in equilibrium fluids on the basis of fluctuating hydrodynamics. It then shows how the method of fluctuating hydrodynamics can be extended to deal with hydrodynamic fluctuations when the system is in a stationary nonequilibrium state. In contrast to equilibrium fluids where the fluctuations are generally short ranged unless the system is close to a critical point, fluctuations in nonequilibrium fluids are always long-ranged encompassing the entire system. The book provides the first comprehensive treatment of fluctuations in fluids and fluid mixtures brought out of equilibrium by the imposition of a temperature and concentration gradient but that are still in a macroscopically quiescent state. By incorporating appropriate boundary conditions in the case of fluid layers, it is shown how fluctuating hydrodynamics affects the fluctuations close to the onset of convection. Experimental techniques of light scattering and shadowgraphy for measuring nonequilibrium fluctuations are elucidated and the experimental results thus far reported in the literature are reviewed.· Systematic exposition of fluctuating hydrodynamics and its applications· First book on nonequilibrium fluctuations in fluids· Fluctuating Boussinesq equations and nonequilibrium fluids· Fluid layers and onset of convection· Rayleigh scattering and Brillouin scattering in fluids· Shadowgraph technique for measuring fluctuations· Fluctuations near hydrodynamic instabilities
This book deals with the problems of the thermodynamics of systems containing flexible-chain polymers as the basis of polymer material science. The main thermodynamic quantities and concepts are introduced and discussed in the order of the objects getting more and more complicated: gases, magnets, low-molecular-weight substances and mixtures, and finally, polymers and polymer blends.All topics are considered in a common clue, using the principle of universality. The stability conditions for the one-phase state of multi-component systems are given. Phase separation is regarded as a result of loss in stability. The critical state of a system, with the one-phase state being close to the boundary of stability conditions breaking, is discussed in detail. The effects of both light scattering (elastic and dynamic) and diffusion, as directly depending on the thermodynamic parameters characterizing the one-phase state stability, are considered in detail. One of the versions of colloid scattering, namely, the turbidity spectrum method, is described as useful for the characterization of various heterogeneous structures and for the phase analysis of polymer systems. In the approximation of mean field theories and advanced field theory, formalisms expound the following divisions of the thermodynamics of binary and polynary systems with flexible-chain polymers: conformation of the polymer coil, composition fluctuations, elastic and dynamic light scattering, diffusion in the one-phase state (including the critical range), phase separation, polymer fractionation, the coil-globule transition, phase equilibrium and separation in the system network polymer + low-molecular-weight liquid, polymer blends and multiphase separation.
Detailed reviews of new and emerging topics in chemical physics presented by leading experts The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. Volume 153 of Advances in Chemical Physics features six expertly written contributions: Recent advances of ultrafast X-ray absorption spectroscopy for molecules in solution Scaling perspective on intramolecular vibrational energy flow: analogies, insights, and challenges Longest relaxation time of relaxation processes for classical and quantum Brownian motion in a potential escape rate theory approach Local fluctuations in solution: theory and applications Macroscopic effects of microscopic heterogeneity Ab initio methodology for pseudospin Hamiltonians of anisotropic magnetic centers Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic. Advances in Chemical Physics is ideal for introducing novices to topics in chemical physics. Moreover, the series provides the foundation needed for more experienced researchers to advance their own research studies and continue to expand the boundaries of our knowledge in chemical physics.
The usefulness of the book to the reader is exposure to many different classes of materials and relaxation phenomena. They are tied together by the universal relaxation and diffusion properties they share, and a consistent explanation of their origin. The readers can apply what they learn to solve their own problems and use it as a stepping-stone to make further advances in theoretical understanding of the origin of the universality.
An introduction to the most important fundamental concepts of physicochemical interface science and a description of experimental techniques and applications of surface science in relation to biological systems. It explores artificial assemblies of lipids, proteins and polysaccharides that perform novel functions that living systems cannot duplicat
Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.