Modern Heterogeneous Catalysis

Modern Heterogeneous Catalysis

Author: Rutger A. van Santen

Publisher: John Wiley & Sons

Published: 2017-02-15

Total Pages: 809

ISBN-13: 3527694501

DOWNLOAD EBOOK

Written by one of the world's leading experts on the topic, this advanced textbook is the perfect introduction for newcomers to this exciting field. Concise and clear, the text focuses on such key aspects as kinetics, reaction mechanism and surface reactivity, concentrating on the essentials. The author also covers various catalytic systems, catalysis by design, and activation-deactivation. A website with supplementary material offers additional figures, original material and references.


Fundamental Concepts in Heterogeneous Catalysis

Fundamental Concepts in Heterogeneous Catalysis

Author: Jens K. Nørskov

Publisher: John Wiley & Sons

Published: 2014-10-27

Total Pages: 228

ISBN-13: 1118888952

DOWNLOAD EBOOK

This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts. Features include: First comprehensive description of modern theory of heterogeneous catalysis Basis for understanding and designing experiments in the field Allows reader to understand catalyst design principles Introduction to important elements of energy transformation technology Test driven at Stanford University over several semesters


Molecular Heterogeneous Catalysis

Molecular Heterogeneous Catalysis

Author: Rutger A. van Santen

Publisher: John Wiley & Sons

Published: 2009-06-10

Total Pages: 488

ISBN-13: 3527608346

DOWNLOAD EBOOK

An integrated approach to the molecular theory of reaction mechanism in heterogeneous catalysis, largely based on the knowledge among the growing theoretical catalysis community over the past half century, and covering all major catalytic systems. The authors develop a general conceptual framework, including in-depth comparisons with enzyme catalysis, biomineralisation, organometallic and coordination chemistry. A chapter dedicated to molecular electrocatalysis addresses the molecular description of reactions at the liquid-solid interphase, while studies range from a quantum-chemical treatment of individual molecular states to dynamic Monte-Carlo simulations, including the full flexibility of the many-particle systems. Complexity in catalysis is explained in chapters on self-organization and self-assembly of catalysts, and other sections are devoted to evolutionary, combinatorial techniques as well as artificial chemistry.


Heterogeneous Catalysts

Heterogeneous Catalysts

Author: Wey Yang Teoh

Publisher: John Wiley & Sons

Published: 2021-02-23

Total Pages: 768

ISBN-13: 352781356X

DOWNLOAD EBOOK

Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.


Modeling and Simulation of Heterogeneous Catalytic Reactions

Modeling and Simulation of Heterogeneous Catalytic Reactions

Author: Olaf Deutschmann

Publisher: John Wiley & Sons

Published: 2013-09-18

Total Pages: 364

ISBN-13: 3527639888

DOWNLOAD EBOOK

The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.


Heterogeneous Catalysis for Energy Applications

Heterogeneous Catalysis for Energy Applications

Author: Tomas R Reina

Publisher: Royal Society of Chemistry

Published: 2020-08-27

Total Pages: 533

ISBN-13: 178801958X

DOWNLOAD EBOOK

Heterogeneous catalysis plays a central role in the global energy paradigm, with practically all energy-related process relying on a catalyst at a certain point. The application of heterogeneous catalysts will be of paramount importance to achieve the transition towards low carbon and sustainable societies. This book provides an overview of the design, limitations and challenges of heterogeneous catalysts for energy applications. In an attempt to cover a broad spectrum of scenarios, the book considers traditional processes linked to fossil fuels such as reforming and hydrocracking, as well as catalysis for sustainable energy applications such as hydrogen production, photocatalysis, biomass upgrading and conversion of CO2 to clean fuels. Novel approaches in catalysts design are covered, including microchannel reactors and structured catalysts, catalytic membranes and ionic liquids. With contributions from leaders in the field, Heterogeneous Catalysis for Energy Applications will be an essential toolkit for chemists, physicists, chemical engineers and industrials working on energy.


Sustainable Organic Synthesis

Sustainable Organic Synthesis

Author: Dr Stefano Protti

Publisher: Royal Society of Chemistry

Published: 2021-10-29

Total Pages: 602

ISBN-13: 1839162031

DOWNLOAD EBOOK

Recent years have seen huge growth in the area of sustainable chemistry. In order to meet the chemical needs of the global population whilst minimising impacts on health and the environment it is essential to keep reconsidering and improving synthetic processes. Sustainable Organic Synthesis is a comprehensive collection of contributions, provided by specialists in Green Chemistry, covering topics ranging from catalytic approaches to benign and alternative reaction media, and innovative and more efficient technologies.


Heterogeneous Catalysis at Nanoscale for Energy Applications

Heterogeneous Catalysis at Nanoscale for Energy Applications

Author: Franklin Tao

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 358

ISBN-13: 1118843525

DOWNLOAD EBOOK

This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems. It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical simulation. The book: Addresses heterogeneous catalysis, one of the crucial technologies employed within the chemical and energy industries Presents the recent advances in the synthesis and characterization of nanocatalysts as well as a mechanistic understanding of catalysis at atomic level for important processes of energy conversion Provides a foundation for the potential design of revolutionarily new technical catalysts and thus the further development of efficient technologies for the global energy economy Includes both theoretical studies and experimental exploration Is useful as both a textbook for graduate and undergraduate students and a reference book for scientists and engineers in chemistry, materials science, and chemical engineering


Nanoparticles in Catalysis

Nanoparticles in Catalysis

Author: Karine Philippot

Publisher: John Wiley & Sons

Published: 2021-06-28

Total Pages: 384

ISBN-13: 3527346074

DOWNLOAD EBOOK

Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.


Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces

Author: Anders Nilsson

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 533

ISBN-13: 0080551912

DOWNLOAD EBOOK

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces