Molecular Engineering for Thin-film Applications

Molecular Engineering for Thin-film Applications

Author: Jie Huang

Publisher:

Published: 2014

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

In this dissertation, two different approaches to employ organic molecules for thin-film applications will be discussed. One is based on modification of substrates using self-assembled monolayers (SAMs) to prevent (or enhance) nucleation of atomic layer deposition (ALD). We demonstrate area-selective deposition using electron-beam lithography (EBL) patterned octadecyltrichlorosilane (OTS) SAM as a nucleation inhibition layer followed by titanium oxide (TiO2) deposition using ALD. It was found that the e-beam dosage determined the resolution of individual line width, while the accelerating voltage dominated the minimum pitch dimension of dense line patterns achievable. Eventually, using the optimal e-beam parameters, nano-line patterns with sub-30 nm resolution and 50 nm pitch were achieved. This study offers a new approach to fabricate close-packed nano-patterns for IC devices without any challenging etching process. The other approach is direct implementation of small molecules as molecular precursors to deposit self-limiting organic multi-layers which eventually allows layer-by-layer deposition like ALD. Two types of organic molecules, 7-octenytrichlorosilane (7-OTS) and hydroquinone (HQ), were applied as backbones of these multi-layers. Conventional inorganic ALD precursors, such as trimethylaluminum (TMA) and diethylzinc (DEZ), were applied as linkers between the organic layers to form organic-inorganic hybrid thin films and nano-laminates. It was found that resulting materials characteristics can be varied from insulating to semi-conducting by altering the organic component from alkane to aromatic based molecules. This methodology provides a new route to build 2D nano-sheets with unique properties.


Nanocoatings and Ultra-Thin Films

Nanocoatings and Ultra-Thin Films

Author: Abdel Salam Hamdy Makhlouf

Publisher: Elsevier

Published: 2011-09-14

Total Pages: 449

ISBN-13: 0857094904

DOWNLOAD EBOOK

Coatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications of nanocoatings and ultra-thin films, with chapters covering topics such as nanocoatings for architectural glass, packaging applications, conventional and smart nanocoatings for corrosion protection in aerospace engineering and ultra-thin membranes for sensor applications. With its distinguished editors and international team of contributors, Nanocoatings and ultra-thin films is an essential reference for professional engineers in the glazing, consctruction, electronics and transport industries, as well as all those with an academic research interest in the field. Provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings Focuses on the applications of nanocoatings and ultra-thin films, covering topics such as nanocoatings for architectural glass, packaging applications and ultra-thin membranes for sensor applications Includes chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films


Thin Film Device Applications

Thin Film Device Applications

Author: Kasturi Chopra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 1461336821

DOWNLOAD EBOOK

Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver sion, and protection and passivating layers. Indeed, one would be hard pressed to find many sophisticated modern optical and electronic devices which do not use thin films in one way or the other. With the impetus provided by industrial applications, the science and technology of thin films have undergone revolutionary development and even today continue to be recognized globally as frontier areas of RID work. Major technical developments in any field of science and technology are invariably accompanied by an explosion of published literature in the form of scientific publications, reviews, and books.


Functional Thin Films Technology

Functional Thin Films Technology

Author: Sam Zhang

Publisher: CRC Press

Published: 2021-08-09

Total Pages: 446

ISBN-13: 1000408469

DOWNLOAD EBOOK

Functional Thin Films Technology features the functional aspects of thin films, such as their application in solar selective absorbers, fiber lasers, solid oxide fuel cells, piezo-related areas, catalysts, superhydrophobicity, semiconductors, and trace pesticides detection. It highlights developments and advances in the preparation, characterization, and applications of functional micro-/nano-scaled films and coatings. This book Presents technologies aimed at functionality used in nanoelectronics, solar selective absorbers, solid oxide fuel cells, piezo-applications, and sensors Covers absorbers, catalysts, anodic aluminum oxide, superhydrophobics, and semiconductor devices Features a chapter on transport phenomena associated to structures Discusses transport phenomena and material informatics This second volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and materials engineering.


Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Author: Soumen Das

Publisher: Elsevier

Published: 2021-01-29

Total Pages: 746

ISBN-13: 0128197188

DOWNLOAD EBOOK

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing


Engineering Thin Films and Nanostructures with Ion Beams

Engineering Thin Films and Nanostructures with Ion Beams

Author: Emile Knystautas

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 592

ISBN-13: 1420028294

DOWNLOAD EBOOK

While ion-beam techniques have been used to create thin films in the semiconductor industry for several decades, these methods have been too costly for other surface treatment applications. However, as manufacturing devices become increasingly smaller, the use of a directed-energy ion beam is finding novel industrial applications that require the custom tailoring of new materials and devices, including magnetic storage devices, photonics, opto-electronics, and molecular transport. Engineering Thin Films and Nanostructures with Ion Beams offers a thorough narrative of the recent advances that make this technology relevant to current and future applications. Featuring internationally recognized researchers, the book compiles their expertise in a multidimensional source that: Highlights the mechanisms and visual evidence of the effects of single-ion impacts on metallic surfaces Considers how ion-beam techniques can help achieve higher disk-drive densities Introduces gas-cluster ion-beam technology and reviews its precedents Explains how ion beams are used to aggregate metals and semiconductors into nanoclusters with nonlinear optical properties Addresses current challenges in building equipment needed to produce nanostructures in an industrial setting Examines the combination of ion-beam techniques, particularly with physical vapor deposition Delineates the fabrication of nanopillars, nanoflowers, and interconnected nanochannels in three dimensions by using atomic shadowing techniques Illustrates the production of nanopores of varying dimensions in polymer films, alloys, and superconductors using ion-beam irradiation Shows how fingerprints can be made more reliable as forensic evidence by recoil-mixing them into the substrate using ion beams From the basics of the ion-beam modification of materials to state-of-the-art applications, Engineering Th


Molecular Engineering of Thin Polymer Films Prepared from Functionally-Terminated Oligomers

Molecular Engineering of Thin Polymer Films Prepared from Functionally-Terminated Oligomers

Author:

Publisher:

Published: 1995

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

The research performed under this contract focused on the molecular engineering of thin polymer films prepared from functionally terminated oligomers by application of Langmuir Blodgett monolayer and multilayer film transfer techniques. The goals of the work were to: (1) Fabricate ultrathin films (i.e. 1-10 nm thickness) with controlled thickness, orientation, and surface chemistry. (2) Use these films to develop boundary lubricants that are stable at high temperatures. (3) Apply these films to stabilize the aging characteristics of bulk acoustic wave oscillators. (MM).


Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films

Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films

Author: Jianguo Zhu

Publisher: World Scientific

Published: 2021-06-18

Total Pages: 706

ISBN-13: 9811224005

DOWNLOAD EBOOK

Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.


Materials Science of Thin Films

Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 2002

Total Pages: 817

ISBN-13: 0125249756

DOWNLOAD EBOOK

This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.


Multilayer Thin Films

Multilayer Thin Films

Author: Sukumar Basu

Publisher: BoD – Books on Demand

Published: 2020-01-15

Total Pages: 274

ISBN-13: 1789854377

DOWNLOAD EBOOK

This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties. Of late, graphene and graphene-related derivatives have been proven as the most versatile two-dimensional nanomaterials with superb mechanical, electrical, electronic, optical, and magnetic properties. To understand the in-depth technology, an effort has been made to explain the basics of nano dimensional materials. The importance of nano particles in various aspects of nano technology is clearly indicated. There is more than one chapter describing the use of nanomaterials as sensors. In this volume, an effort has been made to clarify the use of such materials from non-conductor to highly conducting species. It is expected that this book will be useful to the postgraduate and research students as this is a multidisciplinary subject.