Molecular Dynamics and Machine Learning in Drug Discovery

Molecular Dynamics and Machine Learning in Drug Discovery

Author: Sergio Decherchi

Publisher: Frontiers Media SA

Published: 2021-06-08

Total Pages: 119

ISBN-13: 2889668630

DOWNLOAD EBOOK

Dr. Sergio Decherchi and Dr. Andrea Cavalli are co-founders of BiKi Technologies s.r.l. - a company that commercializes a Molecular Dynamics-based software suite for drug discovery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.


Artificial Intelligence in Drug Discovery

Artificial Intelligence in Drug Discovery

Author: Nathan Brown

Publisher: Royal Society of Chemistry

Published: 2020-11-04

Total Pages: 425

ISBN-13: 1839160543

DOWNLOAD EBOOK

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.


Advanced AI Techniques and Applications in Bioinformatics

Advanced AI Techniques and Applications in Bioinformatics

Author: Loveleen Gaur

Publisher: CRC Press

Published: 2021-10-17

Total Pages: 220

ISBN-13: 100046301X

DOWNLOAD EBOOK

The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers


Artificial Intelligence in Drug Design

Artificial Intelligence in Drug Design

Author: Alexander Heifetz

Publisher: Humana

Published: 2022-11-05

Total Pages: 0

ISBN-13: 9781071617892

DOWNLOAD EBOOK

This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.


Biophysical and Computational Tools in Drug Discovery

Biophysical and Computational Tools in Drug Discovery

Author: Anil Kumar Saxena

Publisher: Springer Nature

Published: 2021-10-18

Total Pages: 405

ISBN-13: 3030852814

DOWNLOAD EBOOK

This book reviews recent physicochemical and biophysical techniques applied in drug discovery research, and it outlines the latest advances in computational drug design. Divided into 10 chapters, the book discusses about the role of structural biology in drug discovery, and offers useful application cases of several biophysical and computational methods, including time-resolved fluorometry (TRF) with Förster resonance energy transfer (FRET), X-Ray crystallography, nuclear magnetic resonance spectroscopy, mass spectroscopy, generative machine learning for inverse molecular design, quantum mechanics/molecular mechanics (QM/MM,ONIOM) and quantum molecular dynamics (QMT) methods. Particular attention is given to computational search techniques applied to peptide vaccines using novel mathematical descriptors and structure and ligand-based virtual screening techniques in drug discovery research. Given its scope, the book is a valuable resource for students, researchers and professionals from pharmaceutical industry interested in drug design and discovery.


Computational Pharmaceutics

Computational Pharmaceutics

Author: Defang Ouyang

Publisher: John Wiley & Sons

Published: 2015-07-20

Total Pages: 350

ISBN-13: 1118573994

DOWNLOAD EBOOK

Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.


Drug Discovery and Development

Drug Discovery and Development

Author: Vishwanath Gaitonde

Publisher: BoD – Books on Demand

Published: 2020-03-11

Total Pages: 166

ISBN-13: 1789239753

DOWNLOAD EBOOK

The process of drug discovery and development is a complex multistage logistics project spanned over 10-15 years with an average budget exceeding 1 billion USD. Starting with target identification and synthesizing anywhere between 10k to 15k synthetic compounds to potentially obtain the final drug that reaches the market involves a complicated maze with multiple inter- and intra-operative fields. Topics described in this book emphasize the progresses in computational applications, pharmacokinetics advances, and molecular modeling developments. In addition the book also contains special topics describing target deorphaning in Mycobacterium tuberculosis, therapy treatment of some rare diseases, and developments in the pediatric drug discovery process.


Machine Learning Methodologies To Study Molecular Interactions

Machine Learning Methodologies To Study Molecular Interactions

Author: Elif Ozkirimli

Publisher: Frontiers Media SA

Published: 2022-01-21

Total Pages: 147

ISBN-13: 2889741214

DOWNLOAD EBOOK

Dr. Elif Ozkirimli is a full time employee of F. Hoffmann-La Roche AG, Switzerland and Dr. Artur Yakimovich is a full time employee of Roche Products Limited, UK. All other Topic Editors declare no competing interests with regards to the Research Topic.


Protein Allostery in Drug Discovery

Protein Allostery in Drug Discovery

Author: Jian Zhang

Publisher: Springer Nature

Published: 2019-11-09

Total Pages: 386

ISBN-13: 9811387192

DOWNLOAD EBOOK

The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.