A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
This fully revised second edition provides the only unified synthesis of available information concerning the mechanisms of higher-order memory formation. It spans the range from learning theory, to human and animal behavioral learning models, to cellular physiology and biochemistry. It is unique in its incorporation of chapters on memory disorders, tying in these clinically important syndromes with the basic science of synaptic plasticity and memory mechanisms. It also covers cutting-edge approaches such as the use of genetically engineered animals in studies of memory and memory diseases. Written in an engaging and easily readable style and extensively illustrated with many new, full-color figures to help explain key concepts, this book demystifies the complexities of memory and deepens the reader's understanding. - More than 25% new content, particularly expanding the scope to include new findings in translational research. - Unique in its depth of coverage of molecular and cellular mechanisms - Extensive cross-referencing to Comprehensive Learning and Memory - Discusses clinically relevant memory disorders in the context of modern molecular research and includes numerous practical examples
This special volume of Progress in Molecular Biology and Translational Science provides a current overview of how memory is processed in the brain. A broad range of topics are presented by leaders in the field, ranging from brain circuitry to synaptic plasticity to the molecular machinery that contributes to the brain's ability to maintain information across time. Memory systems in the prefrontal cortex, hippocampus and amygdala are considered as well. In addition, the volume covers recent contributions to our understanding of memory from in vivo imaging, optogenetic, electrophysiological, biochemical and molecular biological studies. - Articles from world renowned experts in memory - Covering topics from signaling, epigenetic, RNA translation to plasticity - Methodological approaches include molecular and cellular, behavioral, electrophysiological, optogenetic and functional imaging
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Long-term potentiation (LTP) is by far the most dominant model for neuronal changes that might encode memory. LTP is an elegant concept that meets many criteria set up by theoreticians long before the model's discovery, and it also fits anatomical data of learning-dependent synapse changes. Since the discovery of LTP, the question has remained about how closely LTP produced in vitro by artificial stimulation of neurons actually models putative learning-induced synaptic changes. A number of recent investigations have tried to correlate synaptic changes observed after learning with changes produced by artificial stimulation of neurons. These studies have failed to find a correlation between the two forms of synaptic plasticity. In this book, an international group of neurobiologists and psychologists discuss their latest ideas and data. The results of experiments using electrophysiological techniques in vitro are discussed and compared with the results of in vivo experiments. Learning experiments are also discussed. Theoretical models such as the Hebb theory of synaptic changes during learning are compared to different models that do not predict upregulation of synaptic transmission. A wide approach is taken, and research and models in different brain areas such as the neocortex and the basal brain are discussed.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
This selection of reviews gives an up-to-date picture of memory research. Great progress has been made in identifying the memory trace at the molecular and cellular level and individual reviews address the major mechanisms by which changes in synaptic strength can persist. Exciting research at the systems level is also reviewed including the growing importance of changes in inhibitory interneurons and how they play a role in memory formation. Finally, reviews present cognitive and neurobiological models of human memory that explain, characterize and organize the act of memory within a coherent framework. - Provides an unique overview that covers all perspectives and methodological approaches to memory - Broad coverage of memory research from molecular to human studies in one source - Up-to-date reviews give the latest important ideas on memory formation
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
This book focuses on associative memory cells and their working principles, which can be applied to associative memories and memory-relevant cognitions. Providing comprehensive diagrams, it presents the author's personal perspectives on pathology and therapeutic strategies for memory deficits in patients suffering from neurological diseases and psychiatric disorders. Associative learning is a common approach to acquire multiple associated signals, including knowledge, experiences and skills from natural environments or social interaction. The identification of the cellular and molecular mechanisms underlying associative memory is important in furthering our understanding of the principles of memory formation and memory-relevant behaviors as well as in developing therapeutic strategies that enhance memory capacity in healthy individuals and improve memory deficit in patients suffering from neurological disease and psychiatric disorders. Although a series of hypotheses about neural substrates for associative memory has been proposed, numerous questions still need to be addressed, especially the basic units and their working principle in engrams and circuits specific for various memory patterns. This book summarizes the developments concerning associative memory cells reported in current and past literature, providing a valuable overview of the field for neuroscientists, psychologists and students.