Water Transport in Brick, Stone and Concrete

Water Transport in Brick, Stone and Concrete

Author: Christopher Hall

Publisher: CRC Press

Published: 2011-10-31

Total Pages: 381

ISBN-13: 020386221X

DOWNLOAD EBOOK

This book provides a unified description of transport processes involving saturated and unsaturated flow in inorganic building materials and structures. It emphasizes fundamental physics and materials science, mathematical description, and experimental measurement as a basis for engineering design and construction practice. Water Transport in Brick


Cement Based Materials

Cement Based Materials

Author: Hosam El-Din M. Saleh

Publisher: BoD – Books on Demand

Published: 2018-10-10

Total Pages: 276

ISBN-13: 1789841534

DOWNLOAD EBOOK

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.


Moisture Storage and Transport in Concrete

Moisture Storage and Transport in Concrete

Author: Lutz H. Franke

Publisher: John Wiley & Sons

Published: 2024-07-29

Total Pages: 357

ISBN-13: 352735378X

DOWNLOAD EBOOK

Comprehensive insight on moisture transport in cement-based materials by means of experimental investigations and computer simulations Moisture Storage and Transport in Concrete explores how moisture moves through cementitious materials, focusing on its absorption, storage, and distribution with the help of experimental investigations and computer simulations. The text discusses the different ways moisture moves, such as through vapor or capillary action, as well as how it affects the properties of cement-based materials, offering new insights and models to help understand and predict moisture behavior in these materials, which can be important for construction and maintenance. After a short introduction to the topic, the text is split into five parts. Part I covers surface energetic principles for moisture storage in porous materials. Part II explores real pore structure and calculation methods for composition parameters. Part III explains basic equations for the description of moisture transport. Part IV discusses experimental investigation results with regard to the modeling of moisture transport in concrete materials. Part V showcases modeling of moisture transport, taking into account sorption hysteresis and time-dependent material changes. Written by a highly qualified author, Moisture Storage and Transport in Concrete also includes discussion on: Dependence of surface energy of water on temperature, on relative humidity of air, and for aqueous salt solutions Calculation of the pore size dependent distribution of inner surfaces using the moisture storage function Temperature influence on the capillary transport coefficients and differences between capillary pressure and hydraulic external pressure Adsorption and desorption isotherms of the CEMI reference material and causes of differences between adsorption and desorption isotherms Sorption isotherms and scanning isotherms of hardened cement paste and concrete Moisture Storage and Transport in Concrete is an essential reference to help researchers and professionals to make informed decisions for the construction of concrete-based infrastructure, enabling them to avoid common issues such as corrosion of reinforcement steel, deterioration of concrete strength, and the growth of mold and mildew.


Creep and Hygrothermal Effects in Concrete Structures

Creep and Hygrothermal Effects in Concrete Structures

Author: Zdeněk P. Bažant

Publisher: Springer

Published: 2018-01-17

Total Pages: 960

ISBN-13: 9402411380

DOWNLOAD EBOOK

This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.


Cement-Based Materials for Nuclear Waste Storage

Cement-Based Materials for Nuclear Waste Storage

Author: Florence Bart

Publisher: Springer Science & Business Media

Published: 2012-08-16

Total Pages: 266

ISBN-13: 1461434459

DOWNLOAD EBOOK

As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.


Advances in Cement-Based Materials

Advances in Cement-Based Materials

Author: Gideon P.A.G. Van Zijl

Publisher: CRC Press

Published: 2009-11-02

Total Pages: 330

ISBN-13: 0203856015

DOWNLOAD EBOOK

Collection of selected papers on current advances in high performance construction materials. Contributions deal with the development, characterization, application procedures, performance and structural design of materials with key potential in civil engineering works. Materials treated are fibre reinforced concrete, high performance concrete, sel


Performance of Cement-Based Materials in Aggressive Aqueous Environments

Performance of Cement-Based Materials in Aggressive Aqueous Environments

Author: Mark Alexander

Publisher: Springer Science & Business Media

Published: 2012-12-18

Total Pages: 471

ISBN-13: 9400754132

DOWNLOAD EBOOK

Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial. These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening. Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods. Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represents the work of many well-known and respected authors who contributed chapters or parts of chapters. Four main themes were addressed: I. Nature and kinetics of degradation and deterioration mechanisms of cement-based materials in aggressive aqueous environments, II. Modelling of deterioration in such environments, III. Test methods to assess performance of cement-based materials in such environments, and which can be used to characterise and rate relative performance and inform long term predictions, IV. Engineering implications and consequences of deterioration in aggressive aqueous environments, and engineering approaches to the problem.


Corrosion of Steel in Concrete

Corrosion of Steel in Concrete

Author: Luca Bertolini

Publisher: John Wiley & Sons

Published: 2013-02-26

Total Pages: 389

ISBN-13: 3527651713

DOWNLOAD EBOOK

Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.


Transport and Interactions of Chlorides in Cement-based Materials

Transport and Interactions of Chlorides in Cement-based Materials

Author: Caijun Shi

Publisher: CRC Press

Published: 2019-07-26

Total Pages: 238

ISBN-13: 0429881975

DOWNLOAD EBOOK

Chloride-induced corrosion is the most important durability issue of reinforced concrete structures, and the prediction and prevention of chloride-induced corrosion has attracted considerable interest all over the world. Given that chloride penetrates through the concrete cover, the issues concerning its transport are crucial. These include testing methods, prediction, and the prevention of ingress. During the transport process, physical and chemical interaction occurs between chloride and cement hydrates, which in turn affects the further transport, so the transport of chloride and these interactions are closely related and underpin our understanding of chloride-induced corrosion in RC structures. This book provides in-depth discussion of chloride transport and its interaction in cement-based materials, and reviews and summarizes the state of the art. The mechanisms and testing methods for chloride transport, chemical interactions of chloride with cement hydrates, chloride binding isotherms, measurement of penetration depths, factors affecting chloride transport, and modeling of chloride transport are discussed in detail. This book serves as a reference for researchers or engineer, and a textbook for graduate students.


Self-Healing Phenomena in Cement-Based Materials

Self-Healing Phenomena in Cement-Based Materials

Author: Mario de Rooij

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 279

ISBN-13: 9400766246

DOWNLOAD EBOOK

Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".