Modular And Automorphic Forms & Beyond

Modular And Automorphic Forms & Beyond

Author: Hossein Movasati

Publisher: World Scientific

Published: 2021-10-12

Total Pages: 323

ISBN-13: 9811238693

DOWNLOAD EBOOK

The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.


Modular Forms: Basics and Beyond

Modular Forms: Basics and Beyond

Author: Goro Shimura

Publisher: Springer Science & Business Media

Published: 2011-11-18

Total Pages: 183

ISBN-13: 146142125X

DOWNLOAD EBOOK

This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows the basics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically.


Automorphic Forms Beyond $mathrm {GL}_2$

Automorphic Forms Beyond $mathrm {GL}_2$

Author: Ellen Elizabeth Eischen

Publisher: American Mathematical Society

Published: 2024-03-26

Total Pages: 199

ISBN-13: 1470474921

DOWNLOAD EBOOK

The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of several topics on automorphic forms on higher rank groups, including rationality questions on unitary group, theta lifts and their applications to Arthur's conjectures, quaternionic modular forms, and automorphic forms over functions fields and their applications to inverse Galois problems. It is based on the lecture notes prepared for the twenty-fifth Arizona Winter School on “Automorphic Forms beyond GL(2)”, held March 5–9, 2022, at the University of Arizona in Tucson. The speakers were Ellen Eischen, Wee Teck Gan, Aaron Pollack, and Zhiwei Yun. The exposition of the book is in a style accessible to students entering the field. Advanced graduate students as well as researchers will find this a valuable introduction to various important and very active research areas.


A First Course in Modular Forms

A First Course in Modular Forms

Author: Fred Diamond

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 462

ISBN-13: 0387272267

DOWNLOAD EBOOK

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.


Representation Theory and Automorphic Forms

Representation Theory and Automorphic Forms

Author: Toshiyuki Kobayashi

Publisher: Springer Science & Business Media

Published: 2007-10-10

Total Pages: 220

ISBN-13: 0817646469

DOWNLOAD EBOOK

This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.


Automorphic Forms on Adele Groups. (AM-83), Volume 83

Automorphic Forms on Adele Groups. (AM-83), Volume 83

Author: Stephen S. Gelbart

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 227

ISBN-13: 1400881617

DOWNLOAD EBOOK

This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?


Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves

Author: Henri Darmon

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 146

ISBN-13: 0821828681

DOWNLOAD EBOOK

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.


Contributions to Automorphic Forms, Geometry, and Number Theory

Contributions to Automorphic Forms, Geometry, and Number Theory

Author: Haruzo Hida

Publisher: JHU Press

Published: 2004-03-11

Total Pages: 946

ISBN-13: 9780801878602

DOWNLOAD EBOOK

In Contributions to Automorphic Forms, Geometry, and Number Theory, Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi bring together a distinguished group of experts to explore automorphic forms, principally via the associated L-functions, representation theory, and geometry. Because these themes are at the cutting edge of a central area of modern mathematics, and are related to the philosophical base of Wiles' proof of Fermat's last theorem, this book will be of interest to working mathematicians and students alike. Never previously published, the contributions to this volume expose the reader to a host of difficult and thought-provoking problems. Each of the extraordinary and noteworthy mathematicians in this volume makes a unique contribution to a field that is currently seeing explosive growth. New and powerful results are being proved, radically and continually changing the field's make up. Contributions to Automorphic Forms, Geometry, and Number Theory will likely lead to vital interaction among researchers and also help prepare students and other young mathematicians to enter this exciting area of pure mathematics. Contributors: Jeffrey Adams, Jeffrey D. Adler, James Arthur, Don Blasius, Siegfried Boecherer, Daniel Bump, William Casselmann, Laurent Clozel, James Cogdell, Laurence Corwin, Solomon Friedberg, Masaaki Furusawa, Benedict Gross, Thomas Hales, Joseph Harris, Michael Harris, Jeffrey Hoffstein, Hervé Jacquet, Dihua Jiang, Nicholas Katz, Henry Kim, Victor Kreiman, Stephen Kudla, Philip Kutzko, V. Lakshmibai, Robert Langlands, Erez Lapid, Ilya Piatetski-Shapiro, Dipendra Prasad, Stephen Rallis, Dinakar Ramakrishnan, Paul Sally, Freydoon Shahidi, Peter Sarnak, Rainer Schulze-Pillot, Joseph Shalika, David Soudry, Ramin Takloo-Bigash, Yuri Tschinkel, Emmanuel Ullmo, Marie-France Vignéras, Jean-Loup Waldspurger.