Some marine propulsion systems are based on thermal machines that operate under the diesel cycle. Their main advantages, compared to other propulsion systems based on thermal machines, are low specific fuel consumption and greater thermal efficiency. However, their main disadvantages lie in the emissions produced by combustion, such as carbon dioxide (CO2), sulfur oxide (SOx), and nitrogen oxide (NOx). Over the last decade, the International Maritime Organization (IMO) has adopted a series of regulations to reduce these emissions based on the introduction of several energy efficiency designs and operational indicators. In this context, this book focuses on the design and operation efficiency of ships through an analysis of the main propulsion systems. It discusses the use of alternative fuels as well as the integration of hybrid and fully electric propulsion systems.
The Maritime Engineering Reference Book is a one-stop source for engineers involved in marine engineering and naval architecture. In this essential reference, Anthony F. Molland has brought together the work of a number of the world's leading writers in the field to create an inclusive volume for a wide audience of marine engineers, naval architects and those involved in marine operations, insurance and other related fields. Coverage ranges from the basics to more advanced topics in ship design, construction and operation. All the key areas are covered, including ship flotation and stability, ship structures, propulsion, seakeeping and maneuvering. The marine environment and maritime safety are explored as well as new technologies, such as computer aided ship design and remotely operated vehicles (ROVs).Facts, figures and data from world-leading experts makes this an invaluable ready-reference for those involved in the field of maritime engineering.Professor A.F. Molland, BSc, MSc, PhD, CEng, FRINA. is Emeritus Professor of Ship Design at the University of Southampton, UK. He has lectured ship design and operation for many years. He has carried out extensive research and published widely on ship design and various aspects of ship hydrodynamics.* A comprehensive overview from best-selling authors including Bryan Barrass, Rawson and Tupper, and David Eyres* Covers basic and advanced material on marine engineering and Naval Architecture topics* Have key facts, figures and data to hand in one complete reference book
Fighting the Fleet recognizes that fleets conduct four distinct but interlocking tasks at the operational level of war--striking, screening, scouting, and basing--and that successful operational art is achieved when they are brought to bear in a cohesive, competitive scheme. In explaining these elements and how they are conjoined for advantage, a central theme emerges: despite the utility and importance of jointness among the armed forces, the effective employment of naval power requires a specialized language and understanding of naval concepts that is often diluted or completely lost when too much jointness is introduced. Woven into the fabric of the book are the fundamental principles of three of the most important naval theorists of the twentieth century: Rear Admiral Bradley Fiske, Rear Admiral J.C. Wylie, and Captain Wayne Hughes. While Cares and Cowden advocate the reinvigoration of combat theory and the appropriate use of operations research, they avoid over-theorizing and have produced a practical guide that empowers fleet planners to wield naval power appropriately and effectively in meeting today's operational and tactical challenges.
Marine Design XIII collects the contributions to the 13th International Marine Design Conference (IMDC 2018, Espoo, Finland, 10-14 June 2018). The aim of this IMDC series of conferences is to promote all aspects of marine design as an engineering discipline. The focus is on key design challenges and opportunities in the area of current maritime technologies and markets, with special emphasis on: • Challenges in merging ship design and marine applications of experience-based industrial design • Digitalisation as technological enabler for stronger link between efficient design, operations and maintenance in future • Emerging technologies and their impact on future designs • Cruise ship and icebreaker designs including fleet compositions to meet new market demands To reflect on the conference focus, Marine Design XIII covers the following research topic series: •State of art ship design principles - education, design methodology, structural design, hydrodynamic design; •Cutting edge ship designs and operations - ship concept design, risk and safety, arctic design, autonomous ships; •Energy efficiency and propulsions - energy efficiency, hull form design, propulsion equipment design; •Wider marine designs and practices - navy ships, offshore and wind farms and production. Marine Design XIII contains 2 state-of-the-art reports on design methodologies and cruise ships design, and 4 keynote papers on new directions for vessel design practices and tools, digital maritime traffic, naval ship designs, and new tanker design for arctic. Marine Design XIII will be of interest to academics and professionals in maritime technologies and marine design.
The ever-growing demand for commercial activities at sea has meant that ships are rapidly developing and that the rules governing their construction and operation are changing. Practical Ship Design records these changes, their outcomes and the reasoning behind them. It deals with every aspect of ship design and handles a wide range of both merchant ships and naval ships with authority. It provides coverage of cargo ships and passenger ships, tugs, dredgers and other service craft. It also includes concept design, detail design, structural design, hydrodynamics design, the effect of regulations, the preparation of specifications and matters of costs and economics. Drawing on the author's extensive practical experience, Practical Ship Design is likely to interest everybody involved in the design, construction, repair and operation of ships. Students and the most experienced professionals will all benefit from the book's vast store of design data and its conclusions and recommendations.
This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and forming of plates and sections are explained. The concept of line heating for plate bending is introduced.Welding power source characteristics, metal transfer mechanisms, welding parameters and their effects on the fusion zone, weld deposit, and weld bead profile are discussed in detail. Various fusion welding methods, MMAW, GMAW, SAW, Electroslag welding and Electrogas welding and single side welding are explained in detail. Friction stir welding as one of the key methods of solid state welding as applied to aluminum alloys is also addressed. The mechanisms of residual stress formation and distortion are explained in connection with stiffened panel fabrication, with an emphasis on weld induced buckling of thin panels. Further, the basic principles of distortion prevention, in-process distortion control and mitigation techniques like heat sinking, thermo-mechanical tensioning etc. are dealt with in detail. In its final section, the book describes in detail various types of weld defects that are likely to occur, together with their causes and remedial measures. The nondestructive testing methods that are most relevant to ship construction are explained. Lastly, a chapter on accuracy control based on statistical principles is included, addressing the need for a suitable mechanism to gauge the ranges of variations so that one can quantitatively target the end product accuracy.
Sustainable Energy Systems on Ships is a comprehensive technical reference for all aspects of energy efficient shipping. The book discusses the technology options to make shipping energy consumption greener, focusing on the smarter integration of energy streams, the introduction of renewable resources and the improvement of control and operability. Chapters not only describe each technology individually, but also analyze their interconnections when implemented onboard, and compare them in terms of suitability for different vessels and economic viability. Readers of Sustainable Energy Systems on Ships will find an invaluable reference suitable for researchers, professionals, and managers involved in the shipping industry and those working on related energy efficiency technologies, fuel cells, and in the transport industry generally. Students of maritime engineering will also be well served by this reference. - Clear analysis of the current implementation status of each technology discussed, the barriers for further development, and the potential for large-scale implementation - Enables decision-making on the most suitable technologies for each type of vessel - Integrates energy efficiency and emission control rules, regulations, technologies (including data science), and challenges in relation to the shipping industry - Includes industry case studies on the integration of novel energy conversion technologies and renewable energy sources in operating ships
The Definitive Reference for Designers and Design StudentsA solid grasp of the fundamentals of materials, along with a thorough understanding of load and design techniques, provides the components needed to complete a marine platform design. Design Principles of Ships and Marine Structures details every facet of ship design and design integr