Modern Methodology and Applications in Spatial-Temporal Modeling

Modern Methodology and Applications in Spatial-Temporal Modeling

Author: Gareth William Peters

Publisher: Springer

Published: 2016-01-08

Total Pages: 123

ISBN-13: 4431553398

DOWNLOAD EBOOK

​ This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.


Spatio-Temporal Methods in Environmental Epidemiology

Spatio-Temporal Methods in Environmental Epidemiology

Author: Gavin Shaddick

Publisher: CRC Press

Published: 2015-06-17

Total Pages: 383

ISBN-13: 1482237040

DOWNLOAD EBOOK

Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and


Statistics for Spatio-Temporal Data

Statistics for Spatio-Temporal Data

Author: Noel Cressie

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 612

ISBN-13: 1119243041

DOWNLOAD EBOOK

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.


Theoretical Aspects of Spatial-Temporal Modeling

Theoretical Aspects of Spatial-Temporal Modeling

Author: Gareth William Peters

Publisher: Springer

Published: 2015-12-24

Total Pages: 136

ISBN-13: 4431553363

DOWNLOAD EBOOK

This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alpha-stable processes. In particular, it covers aspects of characterization via the spectral measure of heavy-tailed distributions and then provides an overview of their applications in wireless communications channel modeling. The final chapter concludes with an overview of analysis for probabilistic spatial percolation methods that are relevant in the modeling of graphical networks and connectivity applications in sensor networks, which also incorporate stochastic geometry features.


Spatio-Temporal Statistics with R

Spatio-Temporal Statistics with R

Author: Christopher K. Wikle

Publisher: CRC Press

Published: 2019-02-18

Total Pages: 397

ISBN-13: 0429649789

DOWNLOAD EBOOK

The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.


Spatial and Spatio-Temporal Geostatistical Modeling and Kriging

Spatial and Spatio-Temporal Geostatistical Modeling and Kriging

Author: José-María Montero

Publisher: John Wiley & Sons

Published: 2015-08-18

Total Pages: 400

ISBN-13: 1118762436

DOWNLOAD EBOOK

Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples


Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Author: Dongmei Chen

Publisher: John Wiley & Sons

Published: 2014-12-31

Total Pages: 496

ISBN-13: 1118629930

DOWNLOAD EBOOK

Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.


Temporal GIS

Temporal GIS

Author: George Christakos

Publisher: Springer Science & Business Media

Published: 2002-01-11

Total Pages: 242

ISBN-13: 9783540414766

DOWNLOAD EBOOK

CD-ROM contains: BMElib, a set of programs for spatiotemporal geostatistics in Temporal GIS written in MatLab (version 5.3 and later).


Current Trends in Bayesian Methodology with Applications

Current Trends in Bayesian Methodology with Applications

Author: Satyanshu K. Upadhyay

Publisher: CRC Press

Published: 2015-05-21

Total Pages: 674

ISBN-13: 1482235129

DOWNLOAD EBOOK

Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics. Each chapter is self-contained and focuses on a Bayesian methodology. It gives an overview of the area, presents theoretical insights, and emphasizes applications through motivating examples. This book reflects the diversity of Bayesian analysis, from novel Bayesian methodology, such as nonignorable response and factor analysis, to state-of-the-art applications in economics, astrophysics, biomedicine, oceanography, and other areas. It guides readers in using Bayesian techniques for a range of statistical analyses.


Regression Modelling wih Spatial and Spatial-Temporal Data

Regression Modelling wih Spatial and Spatial-Temporal Data

Author: Robert P. Haining

Publisher: CRC Press

Published: 2020-01-27

Total Pages: 556

ISBN-13: 0429529104

DOWNLOAD EBOOK

Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online. Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.