Modern Particle Physics

Modern Particle Physics

Author: Mark Thomson

Publisher:

Published: 2013

Total Pages: 825

ISBN-13: 1107289777

DOWNLOAD EBOOK

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--


Modern Theories of Many-Particle Systems in Condensed Matter Physics

Modern Theories of Many-Particle Systems in Condensed Matter Physics

Author: Daniel C. Cabra

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 380

ISBN-13: 3642104487

DOWNLOAD EBOOK

Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.


Modern Many-particle Physics

Modern Many-particle Physics

Author: Enrico Lipparini

Publisher: World Scientific

Published: 2008

Total Pages: 597

ISBN-13: 9812709312

DOWNLOAD EBOOK

A study of modern many-particle physics, this text describes homogenous systems, such as electron gas in different dimensions, the quantum well in an intense magnetic field, liquid helium and nuclear matter, and addresses finite systems, such as metallic clusters, quantum dots, helium drops and nuclei.


Many-Particle Physics

Many-Particle Physics

Author: Gerald D. Mahan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1042

ISBN-13: 1461314690

DOWNLOAD EBOOK

This textbook is for a course in advanced solid-state theory. It is aimed at graduate students in their third or fourth year of study who wish to learn the advanced techniques of solid-state theoretical physics. The method of Green's functions is introduced at the beginning and used throughout. Indeed, it could be considered a book on practical applications of Green's functions, although I prefer to call it a book on physics. The method of Green's functions has been used by many theorists to derive equations which, when solved, provide an accurate numerical description of many processes in solids and quantum fluids. In this book I attempt to summarize many of these theories in order to show how Green's functions are used to solve real problems. My goal, in writing each section, is to describe calculations which can be compared with experiments and to provide these comparisons whenever available. The student is expected to have a background in quantum mechanics at the level acquired from a graduate course using the textbook by either L. I. Schiff, A. S. Davydov, or I. Landau and E. M. Lifshiftz. Similarly, a prior course in solid-state physics is expected, since the reader is assumed to know concepts such as Brillouin zones and energy band theory. Each chapter has problems which are an important part of the lesson; the problems often provide physical insights which are not in the text. Sometimes the answers to the problems are provided, but usually not.


Modern Many-particle Physics

Modern Many-particle Physics

Author: Enrico Lipparini

Publisher: World Scientific

Published: 2003

Total Pages: 452

ISBN-13: 9789812383464

DOWNLOAD EBOOK

An important part of this book is devoted to the description of homogenous systems, such as electron gas in different dimensions, the quantum well in an intense magnetic field, liquid helium and nuclear matter. However, the most relevant part is dedicated to the study of finite systems: metallic clusters, quantum dots, the condensate of cold and diluted atoms in magnetic traps, helium drops and nuclei. The book focuses on methods of getting good numerical approximations to energies and linear response based on approximations to first-principles Hamiltonians. These methods are illustrated and applied to Bose and Fermi systems at zero and finite temperature. Modern Many-Particle Physics is directed towards students who have taken a conventional course in quantum mechanics and possess a basic understanding of condensed matter phenomena. Readership: Graduate students in condensedmatter, nuclear and semiconductor physics, as well as nuclear, quantum and theoretical chemistry.


Modern Elementary Particle Physics

Modern Elementary Particle Physics

Author: Gordon Kane

Publisher: Cambridge University Press

Published: 2017-03-08

Total Pages: 242

ISBN-13: 1316730808

DOWNLOAD EBOOK

This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.


Computational Many-Particle Physics

Computational Many-Particle Physics

Author: Holger Fehske

Publisher: Springer

Published: 2007-12-10

Total Pages: 774

ISBN-13: 3540746862

DOWNLOAD EBOOK

Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.


Modern Many-particle Physics: Atomic Gases, Nanostructures And Quantum Liquids (2nd Edition)

Modern Many-particle Physics: Atomic Gases, Nanostructures And Quantum Liquids (2nd Edition)

Author: Enrico Lipparini

Publisher: World Scientific Publishing Company

Published: 2008-02-01

Total Pages: 597

ISBN-13: 9813101504

DOWNLOAD EBOOK

This book is devoted to the description of Bosonic and Fermionic systems: metallic clusters; quantum dots, wires, rings and molecules; trapped Fermi and Bose atoms; liquid drops of Helium; electron gas in different dimensions and geometries with and without magnetic fields.Extensively updated with 200 extra pages, the new edition of this successful book includes the field's cutting-edge areas: spin-orbit coupling in heterostructures and spintronics; the conductivity problem: conductivity of quantum wires, magnetoconductivity of nanostructures, spin-Hall conductivity; atomic Fermi gases in traps; non-collinear local spin density approximation calculations; and Brueckner-Hartree-Fock in finite size systems.


Particle Or Wave

Particle Or Wave

Author: Charis Anastopoulos

Publisher: Princeton University Press

Published: 2008

Total Pages: 444

ISBN-13: 9780691135120

DOWNLOAD EBOOK

'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.


Quantum Many-particle Systems

Quantum Many-particle Systems

Author: John W. Negele

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 474

ISBN-13: 0429966474

DOWNLOAD EBOOK

This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.