In recent years, interest-rate modeling has developed rapidly in terms of both practice and theory. The academic and practitioners' communities, however, have not always communicated as productively as would have been desirable. As a result, their research programs have often developed with little constructive interference. In this book, Riccardo Rebonato draws on his academic and professional experience, straddling both sides of the divide to bring together and build on what theory and trading have to offer. Rebonato begins by presenting the conceptual foundations for the application of the LIBOR market model to the pricing of interest-rate derivatives. Next he treats in great detail the calibration of this model to market prices, asking how possible and advisable it is to enforce a simultaneous fitting to several market observables. He does so with an eye not only to mathematical feasibility but also to financial justification, while devoting special scrutiny to the implications of market incompleteness. Much of the book concerns an original extension of the LIBOR market model, devised to account for implied volatility smiles. This is done by introducing a stochastic-volatility, displaced-diffusion version of the model. The emphasis again is on the financial justification and on the computational feasibility of the proposed solution to the smile problem. This book is must reading for quantitative researchers in financial houses, sophisticated practitioners in the derivatives area, and students of finance.
Interest rate traders have been using the SABR model to price vanilla products for more than a decade. However this model suffers however from a severe limitation: its inability to value exotic products. A term structure model à la LIBOR Market Model (LMM) is often employed to value these more complex derivatives, however the LMM is unable to capture the volatility smile. A joint SABR LIBOR Market Model is the natural evolution towards a consistent pricing of vanilla and exotic products. Knowledge of these models is essential to all aspiring interest rate quants, traders and risk managers, as well an understanding of their failings and alternatives. SABR and SABR Libor Market Models in Practice is an accessible guide to modern interest rate modelling. Rather than covering an array of models which are seldom used in practice, it focuses on the SABR model, the market standard for vanilla products, the LIBOR Market Model, the most commonly used model for exotic products and the extended SABR LIBOR Market Model. The book takes a hands-on approach, demonstrating simply how to implement and work with these models in a market setting. It bridges the gap between the understanding of the models from a conceptual and mathematical perspective and the actual implementation by supplementing the interest rate theory with modelling specific, practical code examples written in Python.
The field of financial mathematics has developed tremendously over the past thirty years, and the underlying models that have taken shape in interest rate markets and bond markets, being much richer in structure than equity-derivative models, are particularly fascinating and complex. This book introduces the tools required for the arbitrage-free modelling of the dynamics of these markets. Andrew Cairns addresses not only seminal works but also modern developments. Refreshingly broad in scope, covering numerical methods, credit risk, and descriptive models, and with an approachable sequence of opening chapters, Interest Rate Models will make readers--be they graduate students, academics, or practitioners--confident enough to develop their own interest rate models or to price nonstandard derivatives using existing models. The mathematical chapters begin with the simple binomial model that introduces many core ideas. But the main chapters work their way systematically through all of the main developments in continuous-time interest rate modelling. The book describes fully the broad range of approaches to interest rate modelling: short-rate models, no-arbitrage models, the Heath-Jarrow-Morton framework, multifactor models, forward measures, positive-interest models, and market models. Later chapters cover some related topics, including numerical methods, credit risk, and model calibration. Significantly, the book develops the martingale approach to bond pricing in detail, concentrating on risk-neutral pricing, before later exploring recent advances in interest rate modelling where different pricing measures are important.
This book combines a rigorous overview of the mathematics of financial markets with an insight into the practical application of these models to the risk and portfolio management of interest-rate derivatives. It can also serve as a valuable textbook on financial markets for graduate and PhD students in mathematics. Interesting and comprehensive case studies illustrate the theoretical concepts.
Rebonato provides an authoritative, clear, and up-to-date explanation of the cutting-edge innovations in affine modeling for government bonds, and provides readers with the precise tools to develop their own models. This book combines precise theory with up-to-date empirical evidence to build, with the minimum mathematical sophistication required for the task, a critical understanding of what drives the government bond market.
The most professional and industry relatable text currently available for linear interest rate derivatives. Written by a practicing derivatives portfolio manager with over fifteen years of fixed income trading experience, this book focuses on core trading concepts; pricing, curve building (single and multi-currency), risk, credit and CSAs, regulations, VaR and PCA, volatility, cross-gamma, trade strategy analysis and market moving influences. The book's focus is interest rate swaps and cross-currency swaps, updated for a risk free rate (RFR, such as SOFR and ESTR) framework as opposed to LIBOR. Topics are presented from that perspective, outlining the importance of regulations in an IRD capacity, with volatility and swaptions taught from a practical point of view rather than an overly cumbersome academic one. This third edition (2022) markedly expands the second edition (2017), by not only providing extensive analysis but also building up a modern codebase, step-by-step, in Python. It constructs and solves interest rate curves and goes on to implement risk and cross-gamma calculations, demonstrating the implementation of automatic differentiation for superior efficiency. Read more at https: //github.com/attack68/book_irds3. The treatment of risk is expansive and thorough. The author formally analyses modern market-maker techniques to accurately predict PnL, and successfully implement multiple, consistent perspectives to view all details of risks. Almost everything included here is compulsory knowledge for a modern, successful, swaps trader or interest rate risk portfolio manager. Certainly this book sets the benchmark for the level of expertise that swaps traders should strive for, and the style is aimed at the novice and professional alike.
With the collapse of the Bretton Woods system, any pretense of a connection of the world's currencies to any real commodity has been abandoned. Yet since the 1980s, most central banks have abandoned money-growth targets as practical guidelines for monetary policy as well. How then can pure "fiat" currencies be managed so as to create confidence in the stability of national units of account? Interest and Prices seeks to provide theoretical foundations for a rule-based approach to monetary policy suitable for a world of instant communications and ever more efficient financial markets. In such a world, effective monetary policy requires that central banks construct a conscious and articulate account of what they are doing. Michael Woodford reexamines the foundations of monetary economics, and shows how interest-rate policy can be used to achieve an inflation target in the absence of either commodity backing or control of a monetary aggregate. The book further shows how the tools of modern macroeconomic theory can be used to design an optimal inflation-targeting regime--one that balances stabilization goals with the pursuit of price stability in a way that is grounded in an explicit welfare analysis, and that takes account of the "New Classical" critique of traditional policy evaluation exercises. It thus argues that rule-based policymaking need not mean adherence to a rigid framework unrelated to stabilization objectives for the sake of credibility, while at the same time showing the advantages of rule-based over purely discretionary policymaking.
Understanding the dynamic evolution of the yield curve is critical to many financial tasks, including pricing financial assets and their derivatives, managing financial risk, allocating portfolios, structuring fiscal debt, conducting monetary policy, and valuing capital goods. Unfortunately, most yield curve models tend to be theoretically rigorous but empirically disappointing, or empirically successful but theoretically lacking. In this book, Francis Diebold and Glenn Rudebusch propose two extensions of the classic yield curve model of Nelson and Siegel that are both theoretically rigorous and empirically successful. The first extension is the dynamic Nelson-Siegel model (DNS), while the second takes this dynamic version and makes it arbitrage-free (AFNS). Diebold and Rudebusch show how these two models are just slightly different implementations of a single unified approach to dynamic yield curve modeling and forecasting. They emphasize both descriptive and efficient-markets aspects, they pay special attention to the links between the yield curve and macroeconomic fundamentals, and they show why DNS and AFNS are likely to remain of lasting appeal even as alternative arbitrage-free models are developed. Based on the Econometric and Tinbergen Institutes Lectures, Yield Curve Modeling and Forecasting contains essential tools with enhanced utility for academics, central banks, governments, and industry.
"The three volumes of Interest rate modeling are aimed primarily at practitioners working in the area of interest rate derivatives, but much of the material is quite general and, we believe, will also hold significant appeal to researchers working in other asset classes. Students and academics interested in financial engineering and applied work will find the material particularly useful for its description of real-life model usage and for its expansive discussion of model calibration, approximation theory, and numerical methods."--Preface.
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.