This book provides a comprehensive guide for modern derivatives pricing and credit analysis. Written to provide sound theoretical detail but practical implication, it provides readers with everything they need to know to price modern financial derivatives and analyze the credit exposure of a financial instrument in today's markets.
The credit derivatives market is booming and, for the first time, expanding into the banking sector which previously has had very little exposure to quantitative modeling. This phenomenon has forced a large number of professionals to confront this issue for the first time. Credit Derivatives Pricing Models provides an extremely comprehensive overview of the most current areas in credit risk modeling as applied to the pricing of credit derivatives. As one of the first books to uniquely focus on pricing, this title is also an excellent complement to other books on the application of credit derivatives. Based on proven techniques that have been tested time and again, this comprehensive resource provides readers with the knowledge and guidance to effectively use credit derivatives pricing models. Filled with relevant examples that are applied to real-world pricing problems, Credit Derivatives Pricing Models paves a clear path for a better understanding of this complex issue. Dr. Philipp J. Schönbucher is a professor at the Swiss Federal Institute of Technology (ETH), Zurich, and has degrees in mathematics from Oxford University and a PhD in economics from Bonn University. He has taught various training courses organized by ICM and CIFT, and lectured at risk conferences for practitioners on credit derivatives pricing, credit risk modeling, and implementation.
It was the end of 2005 when our employer, a major European Investment Bank, gave our team the mandate to compute in an accurate way the counterparty credit exposure arising from exotic derivatives traded by the ?rm. As often happens, - posure of products such as, for example, exotic interest-rate, or credit derivatives were modelled under conservative assumptions and credit of?cers were struggling to assess the real risk. We started with a few models written on spreadsheets, t- lored to very speci?c instruments, and soon it became clear that a more systematic approach was needed. So we wrote some tools that could be used for some classes of relatively simple products. A couple of years later we are now in the process of building a system that will be used to trade and hedge counterparty credit ex- sure in an accurate way, for all types of derivative products in all asset classes. We had to overcome problems ranging from modelling in a consistent manner different products booked in different systems and building the appropriate architecture that would allow the computation and pricing of credit exposure for all types of pr- ucts, to ?nding the appropriate management structure across Business, Risk, and IT divisions of the ?rm. In this book we describe some of our experience in modelling counterparty credit exposure, computing credit valuation adjustments, determining appropriate hedges, and building a reliable system.
This book on Interest Rate Derivatives has three parts. The first part is on financial products and extends the range of products considered in Interest Rate Derivatives Explained I. In particular we consider callable products such as Bermudan swaptions or exotic derivatives. The second part is on volatility modelling. The Heston and the SABR model are reviewed and analyzed in detail. Both models are widely applied in practice. Such models are necessary to account for the volatility skew/smile and form the fundament for pricing and risk management of complex interest rate structures such as Constant Maturity Swap options. Term structure models are introduced in the third part. We consider three main classes namely short rate models, instantaneous forward rate models and market models. For each class we review one representative which is heavily used in practice. We have chosen the Hull-White, the Cheyette and the Libor Market model. For all the models we consider the extensions by a stochastic basis and stochastic volatility component. Finally, we round up the exposition by giving an overview of the numerical methods that are relevant for successfully implementing the models considered in the book.
Containing many results that are new, or which exist only in recent research articles, Interest Rate Modeling: Theory and Practice, 2nd Edition portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. Features Presents a complete cycle of model construction and applications, showing readers how to build and use models Provides a systematic treatment of intriguing industrial issues, such as volatility and correlation adjustments Contains exercise sets and a number of examples, with many based on real market data Includes comments on cutting-edge research, such as volatility-smile, positive interest-rate models, and convexity adjustment New to the 2nd edition: volatility smile modeling; a new paradigm for inflation derivatives modeling; an extended market model for credit derivatives; a dual-curved model for the post-crisis interest-rate derivatives markets; and an elegant framework for the xVA.
Since the development of the Black-Scholes model, research on equity derivatives has evolved rapidly to the point where it is now difficult to cut through the myriad of literature to find relevant material. Written by a quant with many years of experience in the field this book provides an up-to-date account of equity and equity-hybrid (equity-rates, equity-credit, equity-foreign exchange) derivatives modeling from a practitioner's perspective. The content reflects the requirements of practitioners in financial institutions: Quants will find a survey of state-of-the-art models and guidance on how to efficiently implement them with regards to market data representation, calibration, and sensitivity computation. Traders and structurers will learn about structured products, selection of the most appropriate models, as well as efficient hedging methods while risk managers will better understand market, credit, and model risk and find valuable information on advanced correlation concepts. Equity Derivatives and Hybrids provides exhaustive coverage of both market standard and new approaches, including: -Empirical properties of stock returns including autocorrelation and jumps -Dividend discount models -Non-Markovian and discrete-time volatility processes -Correlation skew modeling via copula as well as local and stochastic correlation factors -Hybrid modeling covering local and stochastic processes for interest rate, hazard rate, and volatility as well as closed form solutions -Credit, debt, and funding valuation adjustment (CVA, DVA, FVA) -Monte Carlo techniques for sensitivities including algorithmic differentiation, path recycling, as well as multilevel. Written in a highly accessible manner with examples, applications, research, and ideas throughout, this book provides a valuable resource for quantitative-minded practitioners and researchers.
This book is a collection of original papers by Robert Jarrow that contributed to significant advances in financial economics. Divided into three parts, Part I concerns option pricing theory and its foundations. The papers here deal with the famous Black-Scholes-Merton model, characterizations of the American put option, and the first applications of arbitrage pricing theory to market manipulation and liquidity risk.Part II relates to pricing derivatives under stochastic interest rates. Included is the paper introducing the famous Heath-Jarrow-Morton (HJM) model, together with papers on topics like the characterization of the difference between forward and futures prices, the forward price martingale measure, and applications of the HJM model to foreign currencies and commodities.Part III deals with the pricing of financial derivatives considering both stochastic interest rates and the likelihood of default. Papers cover the reduced form credit risk model, in particular the original Jarrow and Turnbull model, the Markov model for credit rating transitions, counterparty risk, and diversifiable default risk.
This book is a one-stop-shop reference for risk management practitioners involved in the validation of risk models. It is a comprehensive manual about the tools, techniques and processes to be followed, focused on all the models that are relevant in the capital requirements and supervisory review of large international banks.
Commodity markets present several challenges for quantitative modeling. These include high volatilities, small sample data sets, and physical, operational complexity. In addition, the set of traded products in commodity markets is more limited than in financial or equity markets, making value extraction through trading more difficult. These facts make it very easy for modeling efforts to run into serious problems, as many models are very sensitive to noise and hence can easily fail in practice. Modeling and Valuation of Energy Structures is a comprehensive guide to quantitative and statistical approaches that have been successfully employed in support of trading operations, reflecting the author's 17 years of experience as a front-office 'quant'. The major theme of the book is that simpler is usually better, a message that is drawn out through the reality of incomplete markets, small samples, and informational constraints. The necessary mathematical tools for understanding these issues are thoroughly developed, with many techniques (analytical, econometric, and numerical) collected in a single volume for the first time. A particular emphasis is placed on the central role that the underlying market resolution plays in valuation. Examples are provided to illustrate that robust, approximate valuations are to be preferred to overly ambitious attempts at detailed qualitative modeling.
As power and gas markets are becoming more and more mature and globally competitive, the importance of reaching maximum potential economic efficiency is fundamental in all the sectors of the value chain, from investments selection to asset optimization, trading and sales. Optimization techniques can be used in many different fields of the energy industry, in order to reduce production and financial costs, increase sales revenues and mitigate all kinds of risks potentially affecting the economic margin. For this reason the industry has now focused its attention on the general concept of optimization and to the different techniques (mainly mathematical techniques) to reach it. Optimization Methods for Gas and Power Markets presents both theoretical elements and practical examples for solving energy optimization issues in gas and power markets. Starting with the theoretical framework and the basic business and economics of power and gas optimization, it quickly moves on to review the mathematical optimization problems inherent to the industry, and their solutions – all supported with examples from the energy sector. Coverage ranges from very long-term (and capital intensive) optimization problems such as investment valuation/diversification to asset (gas and power) optimization/hedging problems, and pure trading decisions. This book first presents the readers with various examples of optimization problems arising in power and gas markets, then deals with general optimization problems and describes the mathematical tools useful for their solution. The remainder of the book is dedicated to presenting a number of key business cases which apply the proposed techniques to concrete market problems. Topics include static asset optimization, real option evaluation, dynamic optimization of structured products like swing, virtual storage or virtual power plant contracts and optimal trading in intra-day power markets. As the book progresses, so too does the level of mathematical complexity, providing readers with an appreciation of the growing sophistication of even common problems in current market practice. Optimization Methods for Gas and Power Markets provides a valuable quantitative guide to the technicalities of optimization methodologies in gas and power markets; it is essential reading for practitioners in the energy industry and financial sector who work in trading, quantitative analysis and energy risk modeling.