Real Analysis

Real Analysis

Author: Gerald B. Folland

Publisher: John Wiley & Sons

Published: 2013-06-11

Total Pages: 368

ISBN-13: 1118626397

DOWNLOAD EBOOK

An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.


A Course of Modern Analysis

A Course of Modern Analysis

Author: E. T. Whittaker

Publisher: Cambridge University Press

Published: 1927

Total Pages: 620

ISBN-13: 9780521588072

DOWNLOAD EBOOK

This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.


Modern Analysis and Applications

Modern Analysis and Applications

Author: Vadim Adamyan

Publisher: Springer Science & Business Media

Published: 2009-08-29

Total Pages: 518

ISBN-13: 376439921X

DOWNLOAD EBOOK

This is the second of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.


Modern Real Analysis

Modern Real Analysis

Author: William P. Ziemer

Publisher: Springer

Published: 2017-11-30

Total Pages: 389

ISBN-13: 331964629X

DOWNLOAD EBOOK

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.


Introduction to Modern Analysis

Introduction to Modern Analysis

Author: Shmuel Kantorovitz

Publisher: Oxford Graduate Texts in Mathe

Published: 2003

Total Pages: 447

ISBN-13: 0198526563

DOWNLOAD EBOOK

This text is based on lectures given by the author in measure theory, functional analysis, Banach algebras, spectral theory (of bounded and unbounded operators), semigroups of operators, probability and mathematical statistics, and partial differential equations.


Primer of Modern Analysis

Primer of Modern Analysis

Author: K.T. Smith

Publisher: Springer

Published: 1983-08-29

Total Pages: 446

ISBN-13: 0387907971

DOWNLOAD EBOOK

This book discusses some of the first principles of modern analysis. I t can be used for courses at several levels, depending upon the background and ability of the students. It was written on the premise that today's good students have unexpected enthusiasm and nerve. When hard work is put to them, they work harder and ask for more. The honors course (at the University of Wisconsin) which inspired this book was, I think, more fun than the book itself. And better. But then there is acting in teaching, and a typewriter is a poor substitute for an audience. The spontaneous, creative disorder that characterizes an exciting course becomes silly in a book. To write, one must cut and dry. Yet, I hope enough of the spontaneity, enough of the spirit of that course, is left to enable those using the book to create exciting courses of their own. Exercises in this book are not designed for drill. They are designed to clarify the meanings of the theorems, to force an understanding of the proofs, and to call attention to points in a proof that might otherwise be overlooked. The exercises, therefore, are a real part of the theory, not a collection of side issues, and as such nearly all of them are to be done. Some drill is, of course, necessary, particularly in the calculation of integrals.


Modern Discrete Mathematics and Analysis

Modern Discrete Mathematics and Analysis

Author: Nicholas J. Daras

Publisher: Springer

Published: 2018-07-05

Total Pages: 516

ISBN-13: 3319743252

DOWNLOAD EBOOK

A variety of modern research in analysis and discrete mathematics is provided in this book along with applications in cryptographic methods and information security, in order to explore new techniques, methods, and problems for further investigation. Distinguished researchers and scientists in analysis and discrete mathematics present their research. Graduate students, scientists and engineers, interested in a broad spectrum of current theories, methods, and applications in interdisciplinary fields will find this book invaluable.


A Course in Modern Analysis and Its Applications

A Course in Modern Analysis and Its Applications

Author: Graeme L. Cohen

Publisher: Cambridge University Press

Published: 2003-06-30

Total Pages: 356

ISBN-13: 9780521526272

DOWNLOAD EBOOK

Designed for one-semester courses at the senior undergraduate level, this 2003 book will appeal to mathematics undergraduates, to mathematics teachers, and to others who need to learn some mathematical analysis for use in other areas such as engineering, physics, biology or finance. Topics such as completeness and compactness are approached initially through convergence of sequences in metric space, and the emphasis remains on this approach. However, the alternative topological approach is described in a separate chapter. This gives the book more flexibility, making it especially useful as an introduction to more advanced areas such as functional analysis. Nominal divisions of pure and applied mathematics have been merged, leaving enough for students of either inclination to have a feeling for what further developments might look like. Applications have been included from such fields as differential and integral equations, systems of linear algebraic equations, approximation theory, numerical analysis and quantum mechanics.


Integration and Modern Analysis

Integration and Modern Analysis

Author: John J. Benedetto

Publisher: Springer Science & Business Media

Published: 2010-01-08

Total Pages: 589

ISBN-13: 0817646566

DOWNLOAD EBOOK

This textbook and treatise begins with classical real variables, develops the Lebesgue theory abstractly and for Euclidean space, and analyzes the structure of measures. The authors' vision of modern real analysis is seen in their fascinating historical commentary and perspectives with other fields. There are comprehensive treatments of the role of absolute continuity, the evolution of the Riesz representation theorem to Radon measures and distribution theory, weak convergence of measures and the Dieudonné–Grothendieck theorem, modern differentiation theory, fractals and self-similarity, rearrangements and maximal functions, and surface and Hausdorff measures. There are hundreds of illuminating exercises, and extensive, focused appendices on functional and Fourier analysis. The presentation is ideal for the classroom, self-study, or professional reference.