This text is appropriate for any one-semester junior/senior level course in Modern Algebra, Abstract Algebra, Algebraic Structures, or Groups, Rings and Fields. Durbin has two main goals: to introduce the most important kinds of algebraic structures, and to help students improve their ability to understand and work with abstract ideas. The first six chapters present the core of the subject; the remainder are designed to be as flexible as possible. Durbin covers groups before rings, which is a matter of personal preference for instructors. The course is mostly comprised of mathematics majors, but you will find engineering and computer science majors as well.
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
ELEMENTS OF MODERN ALGEBRA, 7e, INTERNATIONAL EDITION with its user-friendly format, provides you with the tools you need to get succeed in abstract algebra and develop mathematical maturity as a bridge to higher-level mathematics courses.. Strategy boxes give you guidance and explanations about techniques and enable you to become more proficient at constructing proofs. A summary of key words and phrases at the end of each chapter help you master the material. A reference section, symbolic marginal notes, an appendix, and numerous examples help you develop your problem solving skills.
· Group Theory · Ring Theory · Modules and Vector Spaces · Field Theory and Galois Theory · An Introduction to Commutative Rings, Algebraic Geometry, and Homological Algebra· Introduction to the Representation Theory of Finite Groups
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.