The nucleon optical model is widely used to calculate the elastic scattering cross-sections and polarisations for the interaction of neutrons and protons with atomic nuclei. The optical model potentials not only describe the scattering but also provide the wave functions needed to analyse a wide range of nuclear reactions. They also unify many aspects of nuclear reactions and nuclear structure. This book consists of a comprehensive introduction to the subject and a selection of papers by the author describing the optical model in detail. It contains full references to the original literature with many examples of the application of the model to the analysis of experimental data.
As the only stable baryon, the nucleon is of crucial importance in particle physics. Since the nucleon is a building block for all atomic nuclei, there is a need to analyse the its structure in order to fully understand the essential properties of all atomic nuclei. After more than forty years of research on the nucleon, both the experimental and theoretical situations have matured to a point where a synthesis of the results becomes indispensable. Here, A.W. Thomas and W. Weise present a unique report on the extensive empirical studies, theoretical foundations and the different models of the nucleon. The appendices provide an extensive summary of formulae needed in practical calculations. From the contents: electromagnetic structure of the nucleon, weak probes of nucleon structure, deep inelastic lepton scattering on the nucleon; elements of QCD, aspects of non-perturbative QCD, Chiral Symmetry and nucleon structure, models of the nucleon
This volume consists of contributions from some of Japan's most eminent nuclear theorists. The cluster model of the nucleus is discussed pedagogically and the current status of the field is surveyed. A contribution on Monte Carlo Methods and Lattice Gauge Theories gives nuclear theorists a glimpse of related developments in QCD and Gauge Theories. Few Body Systems are reviewed by Y Akaishi, paying special attention to the ATMS Multiple Scattering Method.
From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.
Theoretical physics has become a many-faceted science. For the young student it is difficult enough to cope with the overwhelming amount of new scientific material that has to be learned, let alone to obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid state theory to elementary-particle physics. And this knowledge should be acquired in just 8-10 semesters during which, in addition, a Diploma or Master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early on as possible, in order to create interest and excitement that in turn set free essential new energy. Naturally, all inessential material must simply be eliminated. At the Johann Wolfgang Goethe University in Frankfurt we therefore confront the student with theoretical physics immediately in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I - an Introduction are the basic courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins and Quantum Mechanics II - Symme tries, Statistical Mechanics and Thermodynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum Chromodynamics are obligatory.
This book is aimed at enabling the reader to obtain a working knowledge of the nuclear shell model and to understand nuclear structure within the framework of the shell model. Attention is concentrated on a coherent, self-contained exposition of the main ideas behind the model with ample illustrations to give an idea beyond formal exposition of the concepts. Since this text grew out of a course taught for advanced undergraduate and first-year graduate students in theoretical nuclear physics, the accents are on a detailed exposition of the material with step-by-step derivations rather than on a superficial description of a large number of topics. In this sense, the book differs from a number of books on theoretical nuclear physics by narrowing the subject to only the nuclear shell model. Most of the expressions used in many of the existing books treating the nuclear shell model are derived here in more detail, in a practitioner's way. Due to frequent student requests I have expanded of detail in order to take away the typical phrase " . . . after some the level simple and straightforward algebra one finds . . . ". The material could probably be treated in a one-year course (implying going through the problem sets and setting up a number of numerical studies by using the provided computer codes). The book is essentially self-contained but requires an introductory course on quantum mechanics and nuclear physics on a more general level.
The two most important developments in nuclear physics were the shell model and the collective model. The former gives the formal framework for a description of nuclei in terms of interacting neutrons and protons. The latter provides a very physical but phenomenological framework for interpreting the observed properties of nuclei. A third approach, based on variational and mean-field methods, brings these two perspectives together in terms of the so-called unified models. Together, these three approaches provide the foundations on which nuclear physics is based. They need to be understood by everyone practicing or teaching nuclear physics, and all those who wish to gain an understanding of the foundations of the models and their relationships to microscopic theory as given by recent developments in terms of dynamical symmetries. This book provides a simple presentation of the models and theory of nuclear collective structure, with an emphasis on the physical content and the ways they are used to interpret data. Part 1 presents the basic phenomenological collective vibrational and rotational models as introduced by Bohr and Mottelson and their many colleagues. It also describes the extensions of these models to parallel unified models in which neutrons and protons move in a mean-field with collective degrees of freedom. Part 2 presents the predominant theories used to describe the collective properties of nuclei in terms of interacting nucleons. These theories, which are shared with other many-body systems, are shown to emerge naturally from the unified models of Part 1.
Provides an advanced and up-to-date account of the theory of nuclear structure and discusses in considerable detail both the superfluid and collective models of the nucleus, in addition to earlier complementary models and theories. The book also examines other important topics such as the rotational and vibrational spectra of nuclei which have not previously been treated in such depth. To summarize, it covers a large amount of theoretical ground in one volume and attempts to fill a serious gap in the literature. Many problems are included
applications to the structure of atomic nuclei. The author systematically develops these models from the elementary level, through an introduction to tensor algebra, to the use of group theory in spectroscopy. The book's extensive and detailed appendix includes a large selection of useful formulae of tensor algebra and spectroscopy. The serious graduate student, as well as the professional physicist, will find this complete treatment of the shell model to be an invaluable addition to the literature.