In this article, we expand the dual generalized weighted BM (DGWBM) and dual generalized weighted geometric Bonferroni mean (DGWGBM) operator with single valued neutrosophic numbers (SVNNs) to propose the dual generalized single-valued neutrosophic number WBM (DGSVNNWBM) operator and dual generalized single-valued neutrosophic numbers WGBM (DGSVNNWGBM) operator.
In this article, we expand the dual generalized weighted BM (DGWBM) and dual generalized weighted geometric Bonferroni mean (DGWGBM) operator with single valued neutrosophic numbers (SVNNs) to propose the dual generalized single-valued neutrosophic number WBM (DGSVNNWBM) operator and dual generalized single-valued neutrosophic numbers WGBM (DGSVNNWGBM) operator.
Single-valued neutrosophic set (SVN) can valid depict the incompleteness, nondeterminacy and inconsistency of evaluation opinion, and the Power average (PA) operator can take into account the correlation of multiple discussed data. Meanwhile, Archimedean copula and co-copula (ACC) can signicant generate operational laws based upon diverse copulas.
This paper proposes a group decision making method based on entropy of neutrosophic linguistic sets and generalized single valued neutrosophic linguistic operators. This method is applied to solve the multiple attribute group decision making problems under single valued neutrosophic liguistic environment, in which the attribute weights are completely unknown
In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems.
In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental concepts, operation formulas and distance calculating method of TFNNs. Then we review some aggregation operators of TFNNs. Thereafter, we extend the original VIKOR model to the triangular fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method, our proposed method which is more reasonable and scientific for considering the conflicting criteria. Furthermore, a numerical example for potential evaluation of emerging technology commercialization is presented to illustrate the new method, and some comparisons are also conducted to further illustrate advantages of the new method.
This Special Issue covers symmetry and asymmetry phenomena occurring in real-life problems. We invited authors to submit their theoretical or experimental research presenting engineering and economic problem solution models dealing with the symmetry or asymmetry of different types of information. The issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, nine papers were accepted and published. The authors proposed different MADM and MODM solution models as integrated tools to find a balance between the components of sustainable global development, to find a symmetry axis concerning goals, risks, and constraints to cope with the complicated problems. Most approaches suggested decision models under uncertainty, combining the usual decision-making methods with interval-valued fuzzy or rough sets theory, also Z numbers. The application fields of the proposed models involved both problems of technological sciences and social sciences. The papers cover three essential areas: engineering, economy, and management. We hope that a summary of the Special Issue as provided here will encourage a detailed analysis of the papers included in the Printed Edition.
In this article, the VIKOR method is proposed to solve the multiple criteria group decision making (MCGDM) with 2-tuple linguistic neutrosophic numbers (2TLNNs). Firstly, the fundamental concepts, operation formulas and distance calculating method of 2TLNNs are introduced. Then some aggregation operators of 2TLNNs are reviewed.
In this paper, we extend the Bonferroni mean (BM) operator, generalized Bonferroni mean (GBM) operator, dual generalized Bonferroni mean (DGBM) operator and dual generalized geometric Bonferroni mean (DGGBM) operator with 2-tuple linguistic neutrosophic numbers (2TLNNs) to propose 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (2TLNNWBM) operator, 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (2TLNNWGBM) operator, generalized 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (G2TLNNWBM) operator, generalized 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (G2TLNNWGBM) operator, dual generalized 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (DG2TLNNWBM) operator, and dual generalized 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (DG2TLNNWGBM) operator.
The neutrosophic set and linguistic term set are widely applied in recently years. Motivated by the advantages of them, we combine the multi-valued neutrosophic set and linguistic set and define the concept of the multi-valued neutrosophic linguistic set (MVNLS).