Models and Ultraproducts

Models and Ultraproducts

Author: John Lane Bell

Publisher: Courier Corporation

Published: 2006-01-01

Total Pages: 338

ISBN-13: 0486449793

DOWNLOAD EBOOK

In this text for first-year graduate students, the authors provide an elementary exposition of some of the basic concepts of model theory--focusing particularly on the ultraproduct construction and the areas in which it is most useful. The book, which assumes only that its readers are acquainted with the rudiments of set theory, starts by developing the notions of Boolean algebra, propositional calculus, and predicate calculus. Model theory proper begins in the fourth chapter, followed by an introduction to ultraproduct construction, which includes a detailed look at its theoretic properties. An overview of elementary equivalence provides algebraic descriptions of the elementary classes. Discussions of completeness follow, along with surveys of the work of Jónsson and of Morley and Vaught on homogeneous universal models, and the results of Keisler in connection with the notion of a saturated structure. Additional topics include classical results of Gödel and Skolem, and extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages. Numerous exercises appear throughout the text.


Models and Ultraproducts

Models and Ultraproducts

Author: A. B. Slomson

Publisher: Dover Publications

Published: 2013-12-20

Total Pages: 336

ISBN-13: 9780486788630

DOWNLOAD EBOOK

This first-year graduate text assumes only an acquaintance with set theory to explore homogeneous universal models, saturated structure, extensions of classical first-order logic, and other topics. 1974 edition.


A Shorter Model Theory

A Shorter Model Theory

Author: Wilfrid Hodges

Publisher: Cambridge University Press

Published: 1997-04-10

Total Pages: 322

ISBN-13: 9780521587136

DOWNLOAD EBOOK

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.


The Theory of Models

The Theory of Models

Author: J.W. Addison

Publisher: Elsevier

Published: 2014-05-27

Total Pages: 513

ISBN-13: 1483275345

DOWNLOAD EBOOK

Studies in Logic and the Foundations of Mathematics: The Theory of Models covers the proceedings of the International Symposium on the Theory of Models, held at the University of California, Berkeley on June 25 to July 11, 1963. The book focuses on works devoted to the foundations of mathematics, generally known as "the theory of models." The selection first discusses the method of alternating chains, semantic construction of Lewis's systems S4 and S5, and continuous model theory. Concerns include ordered model theory, 2-valued model theory, semantics, sequents, axiomatization, formulas, axiomatic approach to hierarchies, alternating chains, and difference hierarchies. The text also ponders on Boolean notions extended to higher dimensions, elementary theories with models without automorphisms, and applications of the notions of forcing and generic sets. The manuscript takes a look at a hypothesis concerning the extension of finite relations and its verification for certain special cases, theories of functors and models, model-theoretic methods in the study of elementary logic, and extensions of relational structures. The text also reviews relatively categorical and normal theories, algebraic theories, categories, and functors, denumerable models of theories with extra predicates, and non-standard models for fragments of number theory. The selection is highly recommended for mathematicians and researchers interested in the theory of models.


The Theory of Ultrafilters

The Theory of Ultrafilters

Author: W.W. Comfort

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 494

ISBN-13: 364265780X

DOWNLOAD EBOOK

An ultrafilter is a truth-value assignment to the family of subsets of a set, and a method of convergence to infinity. From the first (logical) property arises its connection with two-valued logic and model theory; from the second (convergence) property arises its connection with topology and set theory. Both these descriptions of an ultrafilter are connected with compactness. The model-theoretic property finds its expression in the construction of the ultraproduct and the compactness type of theorem of Los (implying the compactness theorem of first-order logic); and the convergence property leads to the process of completion by the adjunction of an ideal element for every ultrafilter-i. e. , to the Stone-Cech com pactification process (implying the Tychonoff theorem on the compact ness of products). Since these are two ways of describing the same mathematical object, it is reasonable to expect that a study of ultrafilters from these points of view will yield results and methods which can be fruitfully crossbred. This unifying aspect is indeed what we have attempted to emphasize in the present work.


Institution-independent Model Theory

Institution-independent Model Theory

Author: Razvan Diaconescu

Publisher: Springer Science & Business Media

Published: 2008-08-01

Total Pages: 377

ISBN-13: 3764387084

DOWNLOAD EBOOK

This book develops model theory independently of any concrete logical system or structure, within the abstract category-theoretic framework of the so called ‘institution theory’. The development includes most of the important methods and concepts of conventional concrete model theory at the abstract institution-independent level. Consequently it is easily applicable to a rather large diverse collection of logics from the mathematical and computer science practice.


Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2014-07-18

Total Pages: 354

ISBN-13: 147041564X

DOWNLOAD EBOOK

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.


Logic of Mathematics

Logic of Mathematics

Author: Zofia Adamowicz

Publisher: John Wiley & Sons

Published: 2011-09-26

Total Pages: 276

ISBN-13: 1118030796

DOWNLOAD EBOOK

A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.