A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 745

ISBN-13: 1400840910

DOWNLOAD EBOOK

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available


Models and Methods for Biological Evolution

Models and Methods for Biological Evolution

Author: Gilles Didier

Publisher: John Wiley & Sons

Published: 2024-04-10

Total Pages: 340

ISBN-13: 1394284241

DOWNLOAD EBOOK

Biological evolution is the phenomenon concerning how species are born, are transformed or disappear over time. Its study relies on sophisticated methods that involve both mathematical modeling of the biological processes at play and the design of efficient algorithms to fit these models to genetic and morphological data. Models and Methods for Biological Evolution outlines the main methods to study evolution and provides a broad overview illustrating the variety of formal approaches used, notably including combinatorial optimization, stochastic models and statistical inference techniques. Some of the most relevant applications of these methods are detailed, concerning, for example, the study of migratory events of ancient human populations or the progression of epidemics. This book should thus be of interest to applied mathematicians interested in central problems in biology, and to biologists eager to get a deeper understanding of widely used techniques of evolutionary data analysis.


Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology

Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology

Author: László Zsolt Garamszegi

Publisher: Springer

Published: 2014-07-29

Total Pages: 553

ISBN-13: 3662435500

DOWNLOAD EBOOK

Phylogenetic comparative approaches are powerful analytical tools for making evolutionary inferences from interspecific data and phylogenies. The phylogenetic toolkit available to evolutionary biologists is currently growing at an incredible speed, but most methodological papers are published in the specialized statistical literature and many are incomprehensible for the user community. This textbook provides an overview of several newly developed phylogenetic comparative methods that allow to investigate a broad array of questions on how phenotypic characters evolve along the branches of phylogeny and how such mechanisms shape complex animal communities and interspecific interactions. The individual chapters were written by the leading experts in the field and using a language that is accessible for practicing evolutionary biologists. The authors carefully explain the philosophy behind different methodologies and provide pointers – mostly using a dynamically developing online interface – on how these methods can be implemented in practice. These “conceptual” and “practical” materials are essential for expanding the qualification of both students and scientists, but also offer a valuable resource for educators. Another value of the book are the accompanying online resources (available at: http://www.mpcm-evolution.com), where the authors post and permanently update practical materials to help embed methods into practice.


Physical Approaches to Biological Evolution

Physical Approaches to Biological Evolution

Author: Mikhail V. Volkenstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 410

ISBN-13: 3642787886

DOWNLOAD EBOOK

"Mr. Wolkenstein's Physical Approaches to Biological Evolution, whether or not it proves to give the ultimate truth on the matters with which it deals, certainly deserves, by its breadth and scope and profundity, to be considered an impor tant event in the philosophical world." This is a quotation from an introduction written by Bertrand Russell for Ludwig Wittgenstein's Tractatus Logico-Philosophicus. I exchanged only name and subject. As for the rest, I could continue quoting Russell, but I would rather say something myself. As Wittgenstein did with formal logic, Wolkenstein rectifies our views on how to approach the logic of life from a formal theoretical basis. Many bio logists do not believe that their subject lends itself to the scrutiny of physical theory. They certainly admit that one can simulate biological phenomena by models that can be expressed in a mathematical form. However, they do not believe that biology can be given a theoretical foundation that is defined within the general framework of physics. Rather, they insist on a holistic approach, banning any reduction to fundamental principles subject to physical theory.


Computational Molecular Evolution

Computational Molecular Evolution

Author: Ziheng Yang

Publisher: Oxford University Press, USA

Published: 2006-10-05

Total Pages: 374

ISBN-13: 0198566999

DOWNLOAD EBOOK

This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.


Charles Darwin and Alfred Russel Wallace

Charles Darwin and Alfred Russel Wallace

Author: Mary Colson

Publisher: Gareth Stevens Publishing LLLP

Published: 2014-08-01

Total Pages: 51

ISBN-13: 1482413507

DOWNLOAD EBOOK

While Charles Darwin is familiar to so many, Alfred Wallace's contribution to science and especially to the theory of evolution was invaluable. The two traveled the world separately and developed their ideas separately, but Darwin published his theory first. Rather than become enemies, they both worked to promote acceptance of the controversial ideas. Readers will be interested in the biographies of these globetrotting scientists as well as actual quotes that aid in a better understanding of the men and their motivations.


Biological Sequence Analysis

Biological Sequence Analysis

Author: Richard Durbin

Publisher: Cambridge University Press

Published: 1998-04-23

Total Pages: 372

ISBN-13: 113945739X

DOWNLOAD EBOOK

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.


Models of Life

Models of Life

Author: Kim Sneppen

Publisher: Cambridge University Press

Published: 2014-10-02

Total Pages: 353

ISBN-13: 1107061903

DOWNLOAD EBOOK

An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.


Dynamical Models in Biology

Dynamical Models in Biology

Author: Miklós Farkas

Publisher: Academic Press

Published: 2001-06-15

Total Pages: 199

ISBN-13: 0080530605

DOWNLOAD EBOOK

Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists. Key Topics Include: - Chaotic dynamics of populations - The spread of sexually transmitted diseases - Problems of the origin of life - Models of immunology - Formation of animal hide patterns - The intuitive meaning of mathematical formulae explained with many figures - Applying new mathematical results in modeling biological phenomena Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education. - A 'down-to-earth' introduction to the growing field of modern mathematical biology - Also includes appendices which provide background material that goes beyond advanced calculus and linear algebra