Modelling and Simulation in Science, Technology and Engineering Mathematics

Modelling and Simulation in Science, Technology and Engineering Mathematics

Author: Surajit Chattopadhyay

Publisher: Springer

Published: 2018-10-24

Total Pages: 666

ISBN-13: 3319748084

DOWNLOAD EBOOK

This volume contains the peer-reviewed proceedings of the International Conference on Modelling and Simulation (MS-17), held in Kolkata, India, 4th-5th November 2017, organized by the Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE, France) in association with the Institution of Engineering Technology (IET, UK), Kolkata Network. The contributions contained here showcase some recent advances in modelling and simulation across various aspects of science and technology. This book brings together articles describing applications of modelling and simulation techniques in fields as diverse as physics, mathematics, electrical engineering, industrial electronics, control, automation, power systems, energy and robotics. It includes a special section on mechanical, fuzzy, optical and opto-electronic control of oscillations. It provides a snapshot of the state of the art in modelling and simulation methods and their applications, and will be of interest to researchers and engineering professionals from industry, academia and research organizations.


Multiscale Modeling and Simulation in Science

Multiscale Modeling and Simulation in Science

Author: Björn Engquist

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 332

ISBN-13: 3540888578

DOWNLOAD EBOOK

Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.


Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Author: Giovanni Naldi

Publisher: Springer Science & Business Media

Published: 2010-08-12

Total Pages: 437

ISBN-13: 0817649468

DOWNLOAD EBOOK

Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.


Modeling and Simulation

Modeling and Simulation

Author: Hans-Joachim Bungartz

Publisher: Springer Science & Business Media

Published: 2013-10-24

Total Pages: 415

ISBN-13: 3642395244

DOWNLOAD EBOOK

Die Autoren führen auf anschauliche und systematische Weise in die mathematische und informatische Modellierung sowie in die Simulation als universelle Methodik ein. Es geht um Klassen von Modellen und um die Vielfalt an Beschreibungsarten. Aber es geht immer auch darum, wie aus Modellen konkrete Simulationsergebnisse gewonnen werden können. Nach einem kompakten Repetitorium zum benötigten mathematischen Apparat wird das Konzept anhand von Szenarien u. a. aus den Bereichen „Spielen – entscheiden – planen" und „Physik im Rechner" umgesetzt.


Scientific Modeling and Simulations

Scientific Modeling and Simulations

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2010-04-07

Total Pages: 396

ISBN-13: 1402097417

DOWNLOAD EBOOK

Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].


Continuum Mechanics

Continuum Mechanics

Author: Antonio Romano

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 353

ISBN-13: 0817648704

DOWNLOAD EBOOK

This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors’ previous book, Continuum Mechanics using Mathematica®, this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.


Mathematical Modeling and Simulation

Mathematical Modeling and Simulation

Author: Kai Velten

Publisher: John Wiley & Sons

Published: 2009-06-01

Total Pages: 362

ISBN-13: 3527627618

DOWNLOAD EBOOK

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).


Mechanics and Dynamical Systems with Mathematica®

Mechanics and Dynamical Systems with Mathematica®

Author: Nicola Bellomo

Publisher: Springer Science & Business Media

Published: 1999-12-28

Total Pages: 438

ISBN-13: 9780817640071

DOWNLOAD EBOOK

Modeling and Applied Mathematics Modeling the behavior of real physical systems by suitable evolution equa tions is a relevant, maybe the fundamental, aspect of the interactions be tween mathematics and applied sciences. Modeling is, however, only the first step toward the mathematical description and simulation of systems belonging to real world. Indeed, once the evolution equation is proposed, one has to deal with mathematical problems and develop suitable simula tions to provide the description of the real system according to the model. Within this framework, one has an evolution equation and the re lated mathematical problems obtained by adding all necessary conditions for their solution. Then, a qualitative analysis should be developed: this means proof of existence of solutions and analysis of their qualitative be havior. Asymptotic analysis may include a detailed description of stability properties. Quantitative analysis, based upon the application ofsuitable methods and algorithms for the solution of problems, ends up with the simulation that is the representation of the dependent variable versus the independent one. The information obtained by the model has to be compared with those deriving from the experimental observation of the real system. This comparison may finally lead to the validation of the model followed by its application and, maybe, further generalization.


Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Author: Simone Göttlich

Publisher: Springer Nature

Published: 2021-02-02

Total Pages: 333

ISBN-13: 3030627322

DOWNLOAD EBOOK

This edited monograph offers a summary of future mathematical methods supporting the recent energy sector transformation. It collects current contributions on innovative methods and algorithms. Advances in mathematical techniques and scientific computing methods are presented centering around economic aspects, technical realization and large-scale networks. Over twenty authors focus on the mathematical modeling of such future systems with careful analysis of desired properties and arising scales. Numerical investigations include efficient methods for the simulation of possibly large-scale interconnected energy systems and modern techniques for optimization purposes to guarantee stable and reliable future operations. The target audience comprises research scientists, researchers in the R&D field, and practitioners. Since the book highlights possible future research directions, graduate students in the field of mathematical modeling or electrical engineering may also benefit strongly.