This thesis presents the first measurements of jets in relativistic heavy ion collisions as reported by the ATLAS Collaboration. These include the first direct observation of jet quenching through the observation of a centrality-dependent dijet asymmetry. Also, a series of jet suppression measurements are presented, which provide quantitative constraints on theoretical models of jet quenching. These results follow a detailed introduction to heavy ion physics with emphasis on the phenomenon of jet quenching and a comprehensive description of the ATLAS detector and its capabilities with regard to performing these measurements.
Papers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR
Written primarily for researchers and graduate students who are new in this emerging field, this book develops the necessary tools so that readers can follow the latest advances in this subject. Readers are first guided to examine the basic informations on nucleon-nucleon collisions and the use of the nucleus as an arena to study the interaction of one nucleon with another. A good survey of the relation between nucleon-nucleon and nucleus-nucleus collisions provides the proper comparison to study phenomena involving the more exotic quark-gluon plasma. Properties of the quark-gluon plasma and signatures for its detection are discussed to aid future searches and exploration for this exotic matter. Recent experimental findings are summarised.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.
The phase structure of particle physics shows up in matter at extremely high densities and/or temperatures as they were reached in the early universe, shortly after the big bang, or in heavy-ion collisions, as they are performed nowadays in laboratory experiments. In contrast to phase transitions of condensed matter physics, the underlying fundamental theories are better known than their macroscopic manifestations in phase transitions. These theories are quantum chromodynamics for the strong interaction part and the electroweak part of the Standard Model for the electroweak interaction. It is their non-Abelian gauge structure that makes it a big challenge to predict the type of phase conversion between phases of different symmetries and different particle contents. The book is about a variety of analytical and numerical tools that are needed to study the phase structure of particle physics. To these belong convergent and asymptotic expansions in strong and weak couplings, dimensional reduction, renormalization group studies, gap equations, Monte Carlo simulations with and without fermions, finite-size and finite-mass scaling analyses, and the approach of effective actions as supplement to first-principle calculations.
This thesis presents the first measurement of charmed D0 meson production relative to the reaction plane in Pb–Pb collisions at the center-of-mass energy per nucleon-nucleon collision of √sNN = 2.76 TeV. It also showcases the measurement of the D0 production in p–Pb collisions at √sNN = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement of the D0 azimuthal anisotropy with respect to the reaction plane indicates that low- momentum charm quarks participate in the collective expansion of the high-density, strongly interacting medium formed in ultra-relativistic heavy-ion collisions, despite their large mass. This behavior can be explained by charm hadronization via recombination with light quarks from the medium and collisional energy loss. The measurement of the D0 production in p–Pb collisions is crucial to separate the effect induced by cold nuclear matter from the final- state effects induced by the hot medium formed in Pb–Pb collisions. The D0 production in p–Pb collisions is consistent with the binary collision scaling of the production in pp collisions, demonstrating that the modification of the momentum distribution observed in Pb–Pb collisions with respect to pp is predominantly induced by final-state effects such as the charm energy loss.