This volume presents a unique combination of modeling and solving real world optimization problems. It is the only book which treats systematically the major modeling languages and systems used to solve mathematical optimization problems, and it also provides a useful overview and orientation of today's modeling languages in mathematical optimization. It demonstrates the strengths and characteristic features of such languages and provides a bridge for researchers, practitioners and students into a new world: solving real optimization problems with the most advances modeling systems.
This volume presents a unique combination of modeling and solving real world optimization problems. It is the only book which treats systematically the major modeling languages and systems used to solve mathematical optimization problems, and it also provides a useful overview and orientation of today's modeling languages in mathematical optimization. It demonstrates the strengths and characteristic features of such languages and provides a bridge for researchers, practitioners and students into a new world: solving real optimization problems with the most advances modeling systems.
This book Algebraic Modeling Systems – Modeling and Solving Real World Optimization Problems – deals with the aspects of modeling and solving real-world optimization problems in a unique combination. It treats systematically the major algebraic modeling languages (AMLs) and modeling systems (AMLs) used to solve mathematical optimization problems. AMLs helped significantly to increase the usage of mathematical optimization in industry. Therefore it is logical consequence that the GOR (Gesellschaft für Operations Research) Working Group Mathematical Optimization in Real Life had a second meeting devoted to AMLs, which, after 7 years, followed the original 71st Meeting of the GOR (Gesellschaft für Operations Research) Working Group Mathematical Optimization in Real Life which was held under the title Modeling Languages in Mathematical Optimization during April 23–25, 2003 in the German Physics Society Conference Building in Bad Honnef, Germany. While the first meeting resulted in the book Modeling Languages in Mathematical Optimization, this book is an offspring of the 86th Meeting of the GOR working group which was again held in Bad Honnef under the title Modeling Languages in Mathematical Optimization.
Computer-based mathematical modeling - the technique of representing and managing models in machine-readable form - is still in its infancy despite the many powerful mathematical software packages already available which can solve astonishingly complex and large models. On the one hand, using mathematical and logical notation, we can formulate models which cannot be solved by any computer in reasonable time - or which cannot even be solved by any method. On the other hand, we can solve certain classes of much larger models than we can practically handle and manipulate without heavy programming. This is especially true in operations research where it is common to solve models with many thousands of variables. Even today, there are no general modeling tools that accompany the whole modeling process from start to finish, that is to say, from model creation to report writing. This book proposes a framework for computer-based modeling. More precisely, it puts forward a modeling language as a kernel representation for mathematical models. It presents a general specification for modeling tools. The book does not expose any solution methods or algorithms which may be useful in solving models, neither is it a treatise on how to build them. No help is intended here for the modeler by giving practical modeling exercises, although several models will be presented in order to illustrate the framework. Nevertheless, a short introduction to the modeling process is given in order to expound the necessary background for the proposed modeling framework.
This book presents a structured approach to formulate, model, and solve mathematical optimization problems for a wide range of real world situations. Among the problems covered are production, distribution and supply chain planning, scheduling, vehicle routing, as well as cutting stock, packing, and nesting. The optimization techniques used to solve the problems are primarily linear, mixed-integer linear, nonlinear, and mixed integer nonlinear programming. The book also covers important considerations for solving real-world optimization problems, such as dealing with valid inequalities and symmetry during the modeling phase, but also data interfacing and visualization of results in a more and more digitized world. The broad range of ideas and approaches presented helps the reader to learn how to model a variety of problems from process industry, paper and metals industry, the energy sector, and logistics using mathematical optimization techniques.
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms traditional design exploration techniques. This book should help a skilled systems designer to learn techniques for using MILP in their problems, and the skilled optimization expert to understand the types of computer systems problems that MILP can be applied to.
This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.
This book focuses on mathematical modeling, describes the process of constructing and evaluating models, discusses the challenges and delicacies of the modeling process, and explicitly outlines the required rules and regulations so that the reader will be able to generalize and reuse concepts in other problems by relying on mathematical logic.Undergraduate and postgraduate students of different academic disciplines would find this book a suitable option preparing them for jobs and research fields requiring modeling techniques. Furthermore, this book can be used as a reference book for experts and practitioners requiring advanced skills of model building in their jobs.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.